Many mouse models of SARS-CoV-2 infection involve expression of the human ACE2 protein, the entry receptor for SARS-CoV-2 Spike protein, in mouse tissues. However, most of these models suffer from nonphysiological regulation of ACE2 expression, which can lead to atypically severe infections and aberrant sites of viral replication. In this report, we developed and characterized an ACE2 gene replacement (ACE2-GR) mouse strain in which the mouse Ace2 genomic locus was replaced by the entire human ACE2 gene locus, and we investigated the ability of these animals to respond to SARS-CoV-2 infection.
View Article and Find Full Text PDFIntroduction: Sequence variants in TMEM106B have been associated with an increased risk of developing dementia.
Methods: As part of our efforts to generate a set of mouse lines in which we replaced the mouse Tmem106b gene with a human TMEM106B gene comprised of either a risk or protective haplotype, we conducted an in-depth sequence analysis of these alleles. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge portal) and full genome sequences (1000 Genomes).
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the widely expressed ataxin-1 (ATXN1) protein. To elucidate anatomical regions and cell types that underlie mutant ATXN1-induced disease phenotypes, we developed a floxed conditional knockin mouse (f-ATXN1146Q/2Q) with mouse Atxn1 coding exons replaced by human ATXN1 exons encoding 146 glutamines. f-ATXN1146Q/2Q mice manifested SCA1-like phenotypes including motor and cognitive deficits, wasting, and decreased survival.
View Article and Find Full Text PDF