Publications by authors named "Jyun-Han Ke"

We designed a new copolymer, poly(ethylene glycol)-block-poly(ε-caprolactone)-graft-poly(acrylic acid) (PAA-PEC), which could be chemically and physically coated onto iron oxide (Fe3O4) nanoparticles for theranostic applications. The chemically PAA-PEC-coated Fe3O4 nanoparticles (PAA-PEC-IO) were prepared using the carboxylic groups of PAA-PEC to bind the Fe3O4 nanoparticles during a co-precipitation reaction. Because of the amphiphilic properties of PAA-PEC, the compound self-assembled into a core-shell structure.

View Article and Find Full Text PDF

MicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs).

View Article and Find Full Text PDF

Pluronic® F127-modified water-dispersible poly(acrylic acid)-bound iron oxide (PF127-PAAIO) nanoparticles have been prepared as diagnostic agents. A blood-brain-barrier penetrating peptide, angiopep-2 (ANG), was further conjugated onto the surface of the PF127-PAAIO (ANG-PF127-PAAIO) for brain targeting. The ANG-PF127-PAAIO shows negligible cell cytotoxicity, better cellular uptake, and higher T-weighted image enhancement than the PF127-PAAIO in U87 cells.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used for multiple biomedical applications. Magnetic-assisted transfection (magnetofection) using SPION is an attractive gene vector candidate. In this work, poly(2-dimethylamino)ethyl methacrylate-bound iron oxide nanoparticles (IO-PDMAEMA) were generated using a grafting-from approach via atom transfer radical polymerization (ATRP) for use as a gene vector.

View Article and Find Full Text PDF

Poly(acrylic acid) was decorated onto Fe(3)O(4) resulting in a highly water-soluble superparamagnetic iron oxide. The Poly(acrylic acid) iron oxide (PAAIO) complexes possess specific magnetic properties in the presence of an external magnetic field and are attractive contrast agents for magnetic resonance imaging (MRI). The free carboxylic groups of PAAIO exposed on the surface allow for covalent attachment of a fluorescent dye, Rhodamine 123 (Rh123) to form PAAIO-Rh123, which permits applications in fluorescence imaging.

View Article and Find Full Text PDF