Publications by authors named "Jyuhn-Huarng Juang"

Recently, we successfully utilized noninvasive magnetic resonance and bioluminescence imaging to track MIN6 cells subcutaneously transplanted in immunocompromised nude mice for up to 64 days. In this study, we further used bioluminescence imaging to investigate the immune rejection of MIN6 cells in immunocompetent C3H mice. A total of 5 × 10 luciferase-transfected MIN6 cells were implanted into the subcutaneous space of each nude or C3H mouse.

View Article and Find Full Text PDF

Previously, we have successfully used noninvasive magnetic resonance (MR) and bioluminescence imaging to detect and monitor mPEG-poly(Ala) hydrogel-embedded MIN6 cells at the subcutaneous space for up to 64 days. In this study, we further explored the histological evolution of MIN6 cell grafts and correlated it with image findings. MIN6 cells were incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) and then 5 × 10 cells in the 100 μL hydrogel solution were injected subcutaneously into each nude mouse.

View Article and Find Full Text PDF

Recently, we have shown that manganese magnetism-engineered iron oxide nanoparticles (MnMEIO NPs) conjugated with exendin-4 (Ex4) act as a contrast agent that directly trace implanted mouse islet β-cells by magnetic resonance imaging (MRI). Here we further advanced this technology to track implanted porcine neonatal pancreatic cell clusters (NPCCs) containing ducts, endocrine, and exocrine cells. NPCCs from one-day-old neonatal pigs were isolated, cultured for three days, and then incubated overnight with MnMEIO-Ex4 NPs.

View Article and Find Full Text PDF

To specifically detect and trace transplanted islet β-cells by magnetic resonance imaging (MRI), we conjugated manganese magnetism-engineered iron oxide nanoparticles (MnMEIO NPs) with exendin-4 (Ex4) which specifically binds glucagon-like peptide-1 receptors on the surface of β-cells. The size distribution of MnMEIO and MnMEIO-Ex4 NPs were 67.8 ± 1.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the effects of a hypoglycemia problem-solving program (HPSP) on problem-solving ability and glycemic control in diabetics with hypoglycemia. This was a prospective, quasi-experimental study with two groups, using a pre- and post-repeated measures design. A total of 71 diabetic patients with hypoglycemia were purposively assigned to an experimental group ( = 34) and a control group ( = 37).

View Article and Find Full Text PDF

Neonatal pancreatic cell clusters (NPCCs) are potential tissues for the treatment of diabetes. Different from adult cells, they continuously proliferate and differentiate after transplantation. In this study, we utilized magnetic resonance imaging (MRI) to detect and monitor implanted NPCCs.

View Article and Find Full Text PDF

Recently, we demonstrated the feasibility of subcutaneous transplantation of MIN6 cells embedded in a scaffold with poly(ethylene glycol) methyl ether (mPEG)-poly(Ala) hydrogels. In this study, we further tracked these grafts using magnetic resonance (MR) and bioluminescence imaging. After being incubated overnight with chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles and then mixed with mPEG-poly(Ala) hydrogels, MIN6 cells appeared as dark spots on MR scans.

View Article and Find Full Text PDF

Background: Previous studies showed inconsistent Results of the effects of dipeptidyl peptidase (DPP)-IV inhibitors on syngeneic mouse islet transplantation. We hypothesized that the implanted islet numbers are critical for the effects of DPP-IV inhibitors on the outcomes of transplantation.

Methods: One hundred and fifty or three hundred islets were syngeneically transplanted under the renal capsule of each streptozocin-diabetic C57BL/6 mouse and recipients were then treated without or with LAF237 (10 mg/kg/day, po) for 6 weeks.

View Article and Find Full Text PDF

More than half of diabetic wounds demonstrate clinical signs of infection at presentation and lead to poor outcomes. This work develops coaxial sheath-core nanofibrous poly(lactide--glycolide) (PLGA) scaffolds that are loaded with bioactive antibiotics and platelet-derived growth factor (PDGF) for the repair of diabetic infectious wounds. PDGF and PLGA/antibiotic solutions were pumped, respectively, into two independent capillary tubings for coaxial electrospinning to prepare biodegradable sheath-core nanofibers.

View Article and Find Full Text PDF

Islet transplantation has been demonstrated to be a promising therapy for type 1 diabetes mellitus. Although it is a minimally invasive operating procedure and provides easy access for graft monitoring, subcutaneous transplantation of the islet only has limited therapeutic outcomes, owing to the poor capacity of skin tissue to foster revascularization in a short period. Herein, 3D cell spheroids of clinically accessible umbilical cord blood mesenchymal stem cells and human umbilical vein endothelial cells are formed and employed for codelivery with β cells subcutaneously.

View Article and Find Full Text PDF

Patients with diabetes mellitus have up to a 15% lifetime risk of non-healing and poorly healing wounds. This work develops core-shell nanofibrous bioactive insulin-loaded poly-D-L-lactide-glycolide (PLGA) scaffolds that release insulin in a sustained manner for repairing wounds in diabetic rats. To prepare the biodegradable core-shell nanofibers, PLGA and insulin solutions were fed into two capillary tubes of different sizes that were coaxially electrospun using two independent pumps.

View Article and Find Full Text PDF

Background: The high lifetime risk of vascular disease is one of the important issues that plague patients with diabetes mellitus. Systemic oral vildagliptin administration favors endothelial recovery and inhibits smooth muscle cell (SMC) proliferation. However, the localized release of vildagliptin in the diabetic vessel damage has seldom been investigated.

View Article and Find Full Text PDF

Objective: The current treatment of atherosclerotic coronary heart disease with limus-eluting stents can lead to incomplete endothelialization and substantial impairment of arterial healing relative to treatment with bare-metal stents. The sustained and local delivery of ticagrelor, a reversibly binding P2Y12 receptor inhibitor, using hybrid biodegradable nanofibers/stents, was developed to reduce neointimal formation and endothelial dysfunction.

Methods: In this investigation, a solution of ticagrelor, poly(D,L)-lactide-co-glycolide, and hexafluoro isopropanol was electrospun to fabricate ticagrelor-eluting nanofibrous drug-eluting stents.

View Article and Find Full Text PDF

Efficient nonviral oral gene delivery offers an attractive modality for chronic protein replacement therapy. Herein, the oral delivery of insulin gene is reported by a nonviral vector comprising a copolymer with a high degree of substitution of branched polyethylenimine on chitosan (CS-g-bPEI). Protecting the plasmid from gastric acidic degradation and facilitating transport across the gut epithelium, the CS-g-bPEI/insulin plasmid DNA nanoparticles (NPs) can achieve systemic transgene expression for days.

View Article and Find Full Text PDF

Increasing the intestinal dissolution of orally administered poorly water-soluble drugs that have poor oral bioavailability to a therapeutically effective level has long been an elusive goal. In this work, an approach that can greatly enhance the oral bioavailability of a poorly water-soluble drug such as curcumin (CUR) is developed, using a "Transformers"-like nanocarrier system (TLNS) that can self-emulsify the drug molecules in the intestinal lumen to form nanoemulsions. Owing to its known anti-inflammation activity, the use of CUR in treating pancreatitis is evaluated herein.

View Article and Find Full Text PDF

Ductal epithelium is primarily detected in porcine neonatal pancreatic cell clusters (NPCCs) bearing grafts, suggesting that transplants might exhibit progenitor-like phenotypes. Here we found that soon after NPCC isolation, PDX1/insulin and SOX9 pancreatic progenitor-like cells dramatically increased while dual-hormonal progenitor-like cells were routinely observed in NPCC culture. After transplantation (Tx), insulin cells increased and PDX1 and SOX9 cells gradually decreased in both non-diabetic (NDM) and streptozotocin-induced diabetic (DM) grafts over 2 months.

View Article and Find Full Text PDF

Background: Hypoglycemia is recognized as a limiting factor in diabetes management. Fear of experiencing hypoglycemia may lead to lower quality of life, impaired glycemic control, and emotional distress, all of which impair the ability of patients to self-manage their diabetes effectively. Problem solving is central to diabetes self-management and may help patients achieve effective self-care of their disease.

View Article and Find Full Text PDF

Sodium dodecyl sulfate (SDS) is generally regarded as a potent permeability enhancer in oral formulations; however, one concern related to the use of any permeation enhancer is its possible absorption of unwanted toxins during the period of epithelial permeability enhancement. In this work, the safety and efficacy of an SDS-containing bubble carrier system that is developed from an orally administered enteric-coated capsule are evaluated. The bubble carriers comprise diethylene triamine pentaacetic acid (DTPA) dianhydride, sodium bicarbonate (SBC), SDS, and insulin.

View Article and Find Full Text PDF

Objective: To develop and psychometrically test a new instrument, the hypoglycaemia problem-solving scale (HPSS), which was designed to measure how well people with diabetes mellitus manage their hypoglycaemia-related problems.

Methods: A cross-sectional survey design approach was used to validate the performance assessment instrument. Patients who had a diagnosis of type 1 or type 2 diabetes mellitus for at least 1 year, who were being treated with insulin and who had experienced at least one hypoglycaemic episode within the previous 6 months were eligible for inclusion in the study.

View Article and Find Full Text PDF

The nanofibrous biodegradable drug-loaded membranes that sustainably released recombinant human platelet-derived growth factor (rhPDGF-BB) to repair diabetic wounds were developed in this work.rhPDGF-BB and poly(lactic-co-glycolic acid) (PLGA) were mixed in hexafluoroisopropyl alcohol, followed by the electrospinning of the solutions into biodegradable membranes to equip the nanofibrous membranes. An elution technique and an enzyme-linked immunosorbent assay kit were used to determine the rhPDGF-BB release rates in vitro and in vivo from this membrane.

View Article and Find Full Text PDF

The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear.

View Article and Find Full Text PDF

This work developed nanofibrous drug-loaded collagen/poly-D-L-lactide-glycolide (PLGA) scaffold membranes that provided the sustained release of glucophage for the wounds associated with diabetes. PLGA, glucophage, and collagen were firstly dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol and were spun into nanofibrous membranes by electrospinning. High-performance liquid chromatography assay was used to characterize the in vivo and in vitro release rates of the pharmaceuticals from the membranes.

View Article and Find Full Text PDF