Publications by authors named "Jyrki Viidanoja"

Different collision-activated dissociation (CAD) methods were evaluated for their effectiveness at distinguishing several ionized isomeric aromatic compounds by using a linear quadrupole ion trap/orbitrap mass spectrometer. The compounds were ionized by using atmospheric pressure chemical ionization (APCI) with carbon disulfide solvent in the positive ion mode to generate stable molecular ions with limited fragmentation. They were subjected to CAD in the linear quadrupole ion trap (ITCAD) and in an octupole collision cell (medium-energy collision-activated dissociation, MCAD; also known as HCD).

View Article and Find Full Text PDF

Since its invention in the 1950s, field ionization mass spectrometry (FI MS) has been, and currently is, the go-to technique employed by the petrochemical industry for the identification of the different types of nonvolatile compounds in their products. Unfortunately, FI MS has several inherent drawbacks, such as poor reproducibility. The performance of positive-ion mode atmospheric pressure chemical ionization mass spectrometry (APCI MS) with O gas as the sheath/auxiliary gas and a saturated hydrocarbon solvent/reagent was recently compared with that of FI MS and found to show promise as an alternative, highly reproducible method for lubricant base oil analysis.

View Article and Find Full Text PDF

Existing liquid chromatography - mass spectrometry method for the analysis of short chain carboxylic acids was expanded and validated to cover also the measurement of glycerol from oils and fats. The method employs chloride anion attachment and two ions, [glycerol+Cl] and [glycerol+Cl], as alternative quantifiers for improved selectivity of glycerol measurement. The averaged within run precision, between run precision and accuracy ranged between 0.

View Article and Find Full Text PDF

A new liquid chromatography-electrospray ionization-tandem Mass Spectrometry (LC-ESI-MS/MS) method was developed for the determination of more than 20 C-C alkyl and alkanolamines in aqueous matrices. The method employs Hydrophilic Interaction Liquid Chromatography Multiple Reaction Monitoring (HILIC-MRM) with a ZIC-pHILIC column and four stable isotope labeled amines as internal standards for signal normalization and quantification of the amines. The method was validated using a refinery process water sample that was obtained from a cooling cycle of crude oil distillation.

View Article and Find Full Text PDF

Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation.

View Article and Find Full Text PDF

A new, sensitive and selective liquid chromatography-electrospray ionization-tandem mass spectrometric (LC-ESI-MS/MS) method was developed for the analysis of Phospholipids (PLs) in bio-oils and fats. This analysis employs hydrophilic interaction liquid chromatography-scheduled multiple reaction monitoring (HILIC-sMRM) with a ZIC-cHILIC column. Eight PL class selective internal standards (homologs) were used for the semi-quantification of 14 PL classes for the first time.

View Article and Find Full Text PDF

A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids.

View Article and Find Full Text PDF

Negative corona discharge atmospheric pressure chemical ionization (APCI) was used to investigate phenols with varying numbers of tert-butyl groups using ion mobility spectrometry-mass spectrometry (IMS-MS). The main characteristic ion observed for all the phenolic compounds was the deprotonated molecule [M-H](-). 2-tert-Butylphenol showed one main mobility peak in the mass-selected mobility spectrum of the [M-H](-) ion measured under nitrogen atmosphere.

View Article and Find Full Text PDF

This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry.

View Article and Find Full Text PDF

The rate coefficients for the gas phase reaction of NO3 and OH radicals with a series of cycloalkanecarbaldehydes have been measured in purified air at 298 +/- 2 K and 760 +/- 10 Torr by the relative rate method using a static reactor equipped with long-path Fourier transform infrared (FT-IR) detection. The values obtained for the OH radical reactions (in units of 10(-11) cm3 molecule(-1) s(-1)) were the following: cyclopropanecarbaldehyde, 2.13 +/- 0.

View Article and Find Full Text PDF

Chemical standards for positive ion mode electrospray ionization ion mobility spectrometry/mass spectrometry (ESI(+)-IMS/MS) are suggested. The low clustering tendency of tetraalkylammonium halides makes them ideal chemical standards for ESI(+)-IMS/MS. A homologous series of these compounds forms a useful external standard for instrument testing and resolution calibration of an IMS instrument.

View Article and Find Full Text PDF

An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility spectrometer drift gas. The design of the ion mobility spectrometer allows reasonably fast installation (about 1 h), and thus the ion mobility spectrometer can be considered as an accessory of the mass spectrometer.

View Article and Find Full Text PDF