Publications by authors named "Jyotsnamayee Nayak"

Modern healthcare engineering requires a wound dressing solution supported by materials with outstanding features such as high biological compatibility, strong mechanical strength, and higher transparency with effective antibacterial properties. Here, we present a unique hydrogel technology consisting of two negatively charged biopolymers and a positively charged synthetic polymer. The interaction between charged polymers through hydrogen bonds has been created, which are revealed in the simulation by density functional theory and Fourier transform infrared spectra of individual polymers and the hydrogel film.

View Article and Find Full Text PDF

Doxorubicin (DOX) is the most effective antineoplastic agent, destroys cancer cells by interrupting cellular function. However, the serious side effects on the heart limits its utility. To curb these unwanted side effects, nutritionist recommend antioxidants use along with DOX while chemotherapy.

View Article and Find Full Text PDF

β-Cyclodextrin (β-CD) is the potential drug carrier to deliver antitumor drugs like doxorubicin (DOX). However, the mechanism for the inclusion complex formation is still unclear and needs to be explored. This study investigated the effect of pH on the inclusion of DOX into thiolated β-CD (β-CD-SH) by electrochemical and molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

Glutathione (GSH) coated gold‑iron oxide core shell nanoparticles (GS-Au-FeO) were prepared by coating glutathione shell on nanoparticles to reduce the dose dependent behaviour of anticancer drug, doxorubicin (DOX). The resultant nanoparticles were characterized using XPS, FTIR, HR-TEM with STEM profile to analyze the GSH shell over the surface. The GS-Au-FeO nanoparticles were loaded with DOX and maximum drug entrapment capacity of 54% was observed in 48 h.

View Article and Find Full Text PDF

A novel mechanism was developed to study the interaction of mussel inspired polydopamine surfaces with bovine serum albumin using cyclic voltammetry and electrochemical impedance spectroscopy supplemented with XPS, IR spectroscopy, UV spectroscopy and atomic force microscopy. The polydopamine surfaces reveal different mechanisms that give a new insight into understanding the interaction with BSA under the variable conditions used for PDA preparation and BSA adsorption. The study provides an in-depth analysis of the orientations and interactions of BSA with polydopamine surfaces.

View Article and Find Full Text PDF