Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology.
View Article and Find Full Text PDFA liquid filament may pinch off into different shapes on interacting with a soft surface, as modulated by the interplay of inertial, capillary, and viscous forces. While similar shape transitions may intuitively be realized for more complex materials such as soft gel filaments as well, their intricate controllability towards deriving precise and stable morphological features remains challenging, as attributed to the complexities stemming from the underlying interfacial interactions over the relevant length and time scales during the sol-gel transition process. Circumventing these deficits in the reported literature, here we report a new means of precisely-controlled fabrication of gel microbeads via exploiting thermally-modulated instabilities of a soft filament atop a hydrophobic substrate.
View Article and Find Full Text PDFMagnetic nanoparticles as drug carriers, despite showing immense promises in preclinical trials, have remained to be only of limited use in real therapeutic practice primarily due to unresolved anomalies concerning their grossly contrasting controllability and variability in performance in artificial test benches as compared to human tissues. To circumvent the deficits of reported drug testing platforms that deviate significantly from the physiological features of the living systems and result in this puzzling contrast, here, we fabricate a biomimetic microvasculature in a flexible tissue phantom and demonstrate distinctive mechanisms of magnetic-field-assisted controllable penetration of biocompatible iron oxide nanoparticles across the same, exclusively modulated by tissue deformability, which has by far remained unraveled. Our experiments deciphering the transport of magnetic nanoparticles in a blood analogue medium unveil a decisive interplay of the flexibility of the microvascular pathways, magnetic pull, and viscous friction toward orchestrating the optimal vascular penetration and targeting efficacy of the nanoparticles in colorectal tissue-mimicking bioengineered media.
View Article and Find Full Text PDFSeveral disease conditions, such as cancer metastasis and atherosclerosis, are deeply connected with the complex biophysical phenomena taking place in the complicated architecture of the tiny blood vessels in human circulatory systems. Traditionally, these diseases have been probed by devising various animal models, which are otherwise constrained by ethical considerations as well as limited predictive capabilities. Development of an engineered network-on-a-chip, which replicates not only the functional aspects of the blood-carrying microvessels of human bodies, but also its geometrical complexity and hierarchical microstructure, is therefore central to the evaluation of organ-assist devices and disease models for therapeutic assessment.
View Article and Find Full Text PDF