Clostridium carboxidivorans was grown on model syngas (CO:H2:CO2 [70:20:10]) in a defined nutrient medium with concentrations of nitrogen, phosphate and trace metals formulated to enhance production of higher alcohols. C. carboxidivorans was successfully grown in a limited defined medium (no yeast extract, no MES buffer and minimal complex chemical inputs) using an improved fermentation protocol.
View Article and Find Full Text PDFTopsoil removal, compaction, and other practices in urban and industrial landscapes can degrade soil and soil ecosystem services. There is growing interest to remediate these for recreational and residential purposes, and urban waste materials offers potential to improve degraded soils. Therefore, the objective of this study was to compare the effects of urban waste products on microbial properties of a degraded industrial soil.
View Article and Find Full Text PDFThe whole-cell lipid extraction to profile microbial communities on soils using fatty acid (FA) biomarkers is commonly done with the two extractants associated with the phospholipid fatty acid (PLFA) or Microbial IDentification Inc. (MIDI) methods. These extractants have very different chemistry and lipid separation procedures, but often shown a similar ability to discriminate soils from various management and vegetation systems.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
April 2012
Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO(2)) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei.
View Article and Find Full Text PDFJ Sci Food Agric
January 2011
Tannins (hydrolysable and condensed tannin) are polyphenolic polymers of relatively high molecular weight with the capacity to form complexes mainly with proteins due to the presence of a large number of phenolic hydroxyl groups. They are widely distributed in nutritionally important forage trees, shrubs and legumes, cereals and grains, which are considered as anti-nutritional compounds due to their adverse effects on intake and animal performance. However, tannins have been recognised to modulate rumen fermentation favourably such as reducing protein degradation in the rumen, prevention of bloat, inhibition of methanogenesis and increasing conjugated linoleic acid concentrations in ruminant-derived foods.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
April 2011
The effect of trace metal ions (Co²+, Cu²+, Fe²+, Mn²+, Mo⁶+, Ni²+, Zn²+, SeO₄⁻ and WO₄⁻) on growth and ethanol production by an ethanologenic acetogen, Clostridium ragsdalei was investigated in CO:CO₂-grown cells. A standard acetogen medium (ATCC medium no. 1754) was manipulated by varying the concentrations of trace metals in the media.
View Article and Find Full Text PDFRecently, greenhouse gas emissions have been of great concern globally. Ruminant livestock due to production of methane during normal fermentation in the rumen contributes substantially to the greenhouse effects. During the recent decade, a paradigm shift has been initiated whether plant secondary metabolites (PSM) could be exploited as natural safe feed additives alternative to chemical additives to inhibit enteric methanogenesis.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
November 2009
In the recent years, the exploration of bioactive phytochemicals as natural feed additives has been of great interest among nutritionists and rumen microbiologists to modify the rumen fermentation favorably such as defaunation, inhibition of methanogenesis, improvement in protein metabolism, and increasing conjugated linoleic acid content in ruminant derived foods. Many phytochemicals such as saponins, essential oils, tannins and flavonoids from a wide range of plants have been identified, which have potential values for rumen manipulation and enhancing animal productivity as alternatives to chemical feed additives. However, their effectiveness in ruminant production has not been proved to be consistent and conclusive.
View Article and Find Full Text PDF