Human embryonic stem (hES) cells possess the ability to self-renew indefinitely and provide a potential source of differentiated progeny representing all three embryonic germ layers. Although hES cell lines share the expression of typical pluripotency markers, limited data is available regarding their differentiation capabilities. We have earlier reported the in-house derivation of two hES cell lines, KIND-1 and KIND-2 on human feeders.
View Article and Find Full Text PDFThe present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1-3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4-7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells.
View Article and Find Full Text PDFThis study describes the successful derivation of two human embryonic stem (hES) cell lines using 53 frozen and 18 fresh "slow-growing" surplus embryos, obtained from collaborating in vitro fertilization clinics, on in-house-derived human feeder layers. The cell lines have been derived by whole embryo culture followed by further expansion of manually dissected inner cell mass from the surrounding trophoectodermal cells. Immunocytochemical localization of cell surface markers like SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81, staining for alkaline phosphatase and reverse transcriptase polymerase chain reaction (RT-PCR) analysis of pluripotency state markers viz.
View Article and Find Full Text PDF