Publications by authors named "Jyoti Pradhan"

Two-dimensional (2D) semiconductor field-effect film transistors combine large carrier mobility with mechanical flexibility and therefore can be ideally suitable for wearable electronics or at the sensor interfaces of smart sensor systems. However, such applications require large-area solution processing as opposed to single-flake devices, where the critical challenge to overcome is the high interflake resistance values. In this report, using a narrow-channel, near-vertical transport device architecture, we have fabricated inkjet-printed sub-20 nm channel electrolyte-gated transistors with predominantly intraflake carrier transport.

View Article and Find Full Text PDF

The switching of conventional field-effect transistors (FETs) is limited by the Boltzmann barrier of thermionic emission, which prevents the realization of low-power electronics. In order to overcome this limitation, among others, unconventional device geometry with a ferroelectric/dielectric insulator stack has been proposed to demonstrate stable negative-capacitance behavior. Here, the switching of the ferroelectric layer behaves like a step-up amplifier and results in a body factor less than 1.

View Article and Find Full Text PDF

The major limitations of solution-processed oxide electronics include high process temperatures and the absence of necessary strain tolerance that would be essential for flexible electronic applications. Here, a combination of low temperature (<100 °C) curable indium oxide nanoparticle ink and a conductive silver nanoink, which are used to fabricate fully-printed narrow-channel thin film transistors (TFTs) on polyethylene terephthalate (PET) substrates, is proposed. The metal ink is printed onto the In O nanoparticulate channel to narrow the effective channel lengths down to the thickness of the In O layer and thereby obtain near-vertical transport across the semiconductor layer.

View Article and Find Full Text PDF

2D semiconductors, such as transition metal dichalcogenides (TMDs) show a rare combination of physical properties that include a large-enough bandgap to ensure sufficient current modulation in transistors, matching electron and hole mobility for complimentary logic operation, and sufficient mechanical flexibility of the nanosheets. Moreover, the solvent-exfoliated TMD-nanosheets may also be processed at low temperatures and onto a wide variety of substrates. However, the poor inter-flake transport in solution-cast 2D-TMD network transistors hinders the realization of high device mobility and current modulations that the intraflake transistors can regularly demonstrate.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a frequently recognized condition on echocardiography. The apical variant, also known as 'Japanese variant', is rare and often poses a diagnostic challenge. There has been a resurgence of interest in the diagnosis of HCM especially with the advent of novel imaging modalities such as strain imaging.

View Article and Find Full Text PDF