Publications by authors named "Jyoti P Kar"

In the field of electronic and optoelectronic applications, two-dimensional materials are found to be promising candidates for futuristic devices. For the detection of infrared (IR) light, MoTepossesses an appropriate bandgap for which p-MoTe/n-Si heterojunctions are well suited for photodetectors. In this study, a rapid thermal technique is used to grow MoTethin films on silicon (Si) substrates.

View Article and Find Full Text PDF

Vertically aligned long ZnO nanorods (NRs) were grown by metal organic chemical vapor deposition (MOCVD) technique. Prior to the NRs growth Ga-doped ZnO (GZO) film was deposited by DC sputtering technique on glass substrates. The length and width of the NRs were 25 microm and 450-500 nm, respectively.

View Article and Find Full Text PDF

Having high bending stability and effective gate coupling, the one-dimensional semiconductor nanostructures (ODSNs)-based thin-film partial composite was demonstrated, and its feasibility was confirmed through fabricating the Si NW thin-film partial composite on the poly(4-vinylphenol) (PVP) layer, obtaining uniform and high-performance flexible field-effect transistors (FETs). With the thin-film partial composite optimized by controlling the key steps consisting of the two-dimensional random dispersion on the hydrophilic substrate of ODSNs and the pressure-induced transfer implantation of them into the uncured thin dielectric polymer layer, the multinanowire (NW) FET devices were simply fabricated. As the NW density increases, the on-current of NW FETs increases linearly, implying that uniform NW distribution can be obtained with random directions over the entire region of the substrate despite the simplicity of the drop-casting method.

View Article and Find Full Text PDF

Although writing was the first human process for communication, it may now become the main process in the electronics industry, because in the industry the programmability as an inherent property is a necessary requirement for next-generation electronics. As an effort to open the era of writing electronics, here we show the feasibility of the direct printing of a high-performance inorganic single crystalline semiconductor nanowire (NW) Schottky diode (SD), including Schottky and Ohmic contacts in series, using premetallization and wrapping with metallic nanofoil. To verify the feasibility of our process, SDs made of Al-premetalized ZnO NWs and plain ZnO NWs were compared with each other.

View Article and Find Full Text PDF

A two step method, with a combination of top-down and bottom-up approaches, was developed for the fabrication of ZnO based hierarchical structures with nanorods on microcraters. A layer of well c-axis aligned, transparent, conductive ZnO thin film was deposited by pulsed DC sputtering on a Corning glass substrate. The microcraters were created with anisotropic etching on the as-deposited ZnO thin film.

View Article and Find Full Text PDF

In order for recently developed advanced nanowire (NW) devices(1-5) to be produced on a large scale, high integration of the separately fabricated nanoscale devices into intentionally organized systems is indispensible. We suggest a unique fabrication route for semiconductor NW electronics. This route provides a high yield and a large degree of freedom positioning the device on the substrate.

View Article and Find Full Text PDF