The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors.
View Article and Find Full Text PDFThe paralogous oncogenic transcriptional coactivators YAP and TAZ are the distal effectors of the Hippo signaling pathway, which plays a critical role in cell proliferation, survival and cell fate specification. They are frequently deregulated in most human cancers, where they contribute to multiple aspects of tumorigenesis including growth, metabolism, metastasis and chemo/immunotherapy resistance. Thus, they provide a critical point for therapeutic intervention.
View Article and Find Full Text PDFFront Cell Dev Biol
March 2022
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in , where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes.
View Article and Find Full Text PDFCancers (Basel)
February 2022
YAP/TAZ are transcriptional coactivators that function as the key downstream effectors of Hippo signaling. They are commonly misregulated in most human cancers, which exhibit a higher level of expression and nuclear localization of YAP/TAZ, and display addiction to YAP-dependent transcription. In the nucleus, these coactivators associate with TEA domain transcription factors (TEAD1-4) to regulate the expression of genes that promote cell proliferation and inhibit cell death.
View Article and Find Full Text PDFThe Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood.
View Article and Find Full Text PDFHippo signaling is an evolutionarily conserved network that has a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional coactivator proteins YAP and TAZ in mammals and Yorkie in Drosophila. Diverse upstream inputs, including both biochemical cues and biomechanical cues, regulate Hippo signaling and enable it to have a key role as a sensor of cells' physical environment and an integrator of growth control signals.
View Article and Find Full Text PDFIntroduction: Persons with paraplegia present complex challenges to anaesthetists. Complications experienced by these patients can require major orthoplastic surgery such as excision of infected bone and soft tissue due to pressure sores and soft tissue reconstruction. Anaesthetic strategies deemed both safe and acceptable to this population are essential.
View Article and Find Full Text PDFThe protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation.
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2013
Pesticide resistance poses a major challenge for the control of vector-borne human diseases and agricultural crop protection. Although a number of studies have defined how mutations in specific target proteins can lead to insecticide resistance, much less is known about the mechanisms by which constitutive overexpression of detoxifying enzymes contributes to metabolic pesticide resistance. Here we show that the Nrf2/Keap1 pathway is constitutively active in two laboratory-selected DDT-resistant strains of Drosophila, 91R and RDDTR, leading to the overexpression of multiple detoxifying genes.
View Article and Find Full Text PDFLiving organisms, from bacteria to humans, display a coordinated transcriptional response to xenobiotic exposure, inducing enzymes and transporters that facilitate detoxification. Several transcription factors have been identified in vertebrates that contribute to this regulatory response. In contrast, little is known about this pathway in insects.
View Article and Find Full Text PDFSUMO, an important post-translational modifier of variety of substrate proteins, regulates different cellular functions. Here, we report the NMR resonance assignment of the folded and 8 M urea-denatured state of SUMO from Drosophila melanogaster (dsmt3).
View Article and Find Full Text PDFThe GTPase effector domain (GED) of dynamin forms large soluble oligomers in vitro, while its mutant--I697A--lacks this property at low concentrations. With a view to understand the intrinsic structural characteristics of the polypeptide chain, the global unfolding characteristics of GED wild type (WT) and I697A were compared using biophysical techniques. Quantitative analysis of the CD and fluorescence denaturation profiles revealed that unfolding occurred by a two-state process and the mutant was less stable than the WT.
View Article and Find Full Text PDF