Publications by authors named "Jyoti M Sen"

Article Synopsis
  • - Loss-of-function studies reveal that T cell factor-1 (TCF1) is crucial for T cell development in the thymus, and its expression is regulated by E box DNA binding proteins independently of Notch signaling.
  • - Systematic analysis of five E protein binding elements (EPE1-5) shows that EPE3 is vital for αβ T cell development, while EPE1, 3, and 5 are important for γδ T cell maturation and fate decisions.
  • - The balanced expression of TCF1, influenced by specific EPEs, is essential for generating the appropriate number of T cells in the thymus.
View Article and Find Full Text PDF

The transcription factor T cell factor-1 (TCF-1) is encoded by Tcf7 and plays a significant role in regulating immune responses to cancer and pathogens. TCF-1 plays a central role in CD4 T cell development; however, the biological function of TCF-1 on mature peripheral CD4 T cell-mediated alloimmunity is currently unknown. This report reveals that TCF-1 is critical for mature CD4 T cell stemness and their persistence functions.

View Article and Find Full Text PDF

Regulatory T cells are suppressive immune cells used in various clinical and therapeutic applications. Canonical regulatory T cells express CD4, FOXP3, and CD25, which are considered definitive markers of their regulatory T-cell status when expressed together. However, a subset of noncanonical regulatory T cells expressing only CD4 and FOXP3 have recently been described in some infection contexts.

View Article and Find Full Text PDF

Cancer immunotherapy relies on improving T cell effector functions against malignancies, but despite the identification of several key transcription factors (TFs), the biological functions of these TFs are not entirely understood. We developed and utilized a novel, clinically relevant murine model to dissect the functional properties of crucial T cell transcription factors during anti-tumor responses. Our data showed that the loss of TCF-1 in CD8 T cells also leads to loss of key stimulatory molecules such as CD28.

View Article and Find Full Text PDF

Background: Although ɑ-synuclein (ɑ-syn) spreading in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) has been extensively investigated, the role of aging in the manifestation of disease remains unclear.

Methods: We explored the role of aging and inflammation in the pathogenesis of synucleinopathies in a mouse model of DLB/PD initiated by intrastriatal injection of ɑ-syn preformed fibrils (pff).

Results: We found that aged mice showed more extensive accumulation of ɑ-syn in selected brain regions and behavioral deficits that were associated with greater infiltration of T cells and microgliosis.

View Article and Find Full Text PDF

Epigenetic reprogramming underlies specification of immune cell lineages, but patterns that uniquely define immune cell types and the mechanisms by which they are established remain unclear. Here, we identified lineage-specific DNA methylation signatures of six immune cell types from human peripheral blood and determined their relationship to other epigenetic and transcriptomic patterns. Sites of lineage-specific hypomethylation were associated with distinct combinations of transcription factors in each cell type.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most widely applied forms of adoptive immunotherapy for the treatment of hematological malignancies. Detrimental graft-versus-host disease (GVHD), but also beneficial graft-versus-leukemia (GVL) effects occurring after allo-HSCT are largely mediated by alloantigen-reactive donor T cells in the graft. Separating GVHD from GVL effects is a formidable challenge, and a greater understanding of donor T cell biology is required to accomplish the uncoupling of GVHD from GVL.

View Article and Find Full Text PDF

TCF1 plays a critical role in T lineage commitment and the development of αβ lineage T cells, but its role in γδ T cell development remains poorly understood. Here, we reveal a regulatory axis where T cell receptor (TCR) signaling controls TCF1 expression through an E-protein-bound regulatory element in the Tcf7 locus, and this axis regulates both γδ T lineage commitment and effector fate. Indeed, the level of TCF1 expression plays an important role in setting the threshold for γδ T lineage commitment and modulates the ability of TCR signaling to influence effector fate adoption by γδ T lineage progenitors.

View Article and Find Full Text PDF

Background: α-Synuclein (α-syn) is a pre-synaptic protein which progressively accumulates in neuronal and non-neuronal cells in neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. Recent evidence suggests that aberrant immune activation may be involved in neurodegeneration in PD/DLB. While previous studies have often focused on the microglial responses, less is known about the role of the peripheral immune system in these disorders.

View Article and Find Full Text PDF

Circulating Klotho peptide hormone has anti-aging activity and affects tissue maintenance. Hypomorphic mutant Klotho [] mice on C57BL/6xC3H, BALB/c and 129 genetic backgrounds, show decreased Klotho expression that correlate with accelerated aging including pre-mature death due to abnormally high levels of serum vitamin D. These mice also show multiple impairments in the immune system.

View Article and Find Full Text PDF

Emerging findings suggest that Parkinson's disease (PD) pathology (α-synuclein accumulation) and neuronal dysfunction may occur first in peripheral neurons of the autonomic nervous system including the enteric branches of the vagus nerve. The risk of PD increases greatly in people over the age of 65, a period of life in which chronic inflammation is common in many organ systems including the gut. Here we report that chronic mild focal intestinal inflammation accelerates the age of disease onset in α-synuclein mutant PD mice.

View Article and Find Full Text PDF

In mutant mice, reduced levels of Klotho promoted high levels of active vitamin D in the serum. Genetic or dietary manipulations that diminished active vitamin D alleviated aging-related phenotypes caused by Klotho down-regulation. The hypomorphic Klotho [kl/kl] allele that decreases Klotho expression in C3H, BALB/c, 129, and C57BL/6 genetic backgrounds substantially increases 1,25(OH)2D3 levels in the sera of susceptible C3H, BALB/c, and 129, but not C57BL/6 mice.

View Article and Find Full Text PDF

The Wnt/β-catenin signaling pathway plays important roles during various cellular functions including survival and proliferation of immune cells. The critical role of this pathway in conventional T cell development is established but little is known about its contributions to innate T cell development. In this study, we found that β-catenin level, an indication of the strength of Wnt/β-catenin signaling, is regulated during invariant NKT (iNKT) cell development.

View Article and Find Full Text PDF

Natural killer T (NKT) cells develop from common CD4(+) CD8(+) thymocyte precursors. Transcriptional programs that regulate the development of NKT cells in the thymus development remain to be fully delineated. Here, we demonstrate a cell-intrinsic requirement for transcription factors TCF1 and LEF1 for the development of all subsets of NKT cells.

View Article and Find Full Text PDF

Background: Invariant Natural Killer T (iNKT) cells have been implicated in lung inflammation in humans and also shown to be a key cell type in inducing allergic lung inflammation in mouse models. iNKT cells differentiate and acquire functional characteristics during development in the thymus. However, the correlation between development of iNKT cells in the thymus and role in lung inflammation remains unknown.

View Article and Find Full Text PDF

T follicular helper (TFH) and T helper 1 (Th1) cells generated after viral infections are critical for the control of infection and the development of immunological memory. However, the mechanisms that govern the differentiation and maintenance of these two distinct lineages during viral infection remain unclear. We found that viral-specific TFH and Th1 cells showed reciprocal expression of the transcriptions factors TCF1 and Blimp1 early after infection, even before the differential expression of the canonical TFH marker CXCR5.

View Article and Find Full Text PDF

Natural killer T (NKT) cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP) thymocyte precursors after the rearrangement and expression of T cell receptor (TCR) Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) senses and incorporates different environmental cues via the two signaling complexes mTOR complex 1 (mTORC1) and mTORC2. As a result, mTOR controls cell growth and survival, and also shapes different effector functions of the cells including immune cells such as T cells. We demonstrate in this article that invariant NKT (iNKT) cell development is controlled by mTORC2 in a cell-intrinsic manner.

View Article and Find Full Text PDF

CD4 T cells acquire functional properties including cytokine production upon antigenic stimulation through the T cell receptor (TCR) and differentiate into T helper (Th) cells. Th1 cells produce interferon (IFN)-γ and Th2 cells produce interleukin (IL)-4. Th1 and 2 cells utilize IFN-γ and IL-4 for further maturation and maintenance, respectively.

View Article and Find Full Text PDF

Innate memory-like CD8 thymocytes develop and acquire effector function during maturation in the absence of encounter with Ags. In this study, we demonstrate that enhanced function of transcription factors T cell factor (TCF)-1 and β-catenin regulate the frequency of promyelocytic leukemia zinc finger (PLZF)-expressing, IL-4-producing thymocytes that promote the generation of eomesodermin-expressing memory-like CD8 thymocytes in trans. In contrast, TCF1-deficient mice do not have PLZF-expressing thymocytes and eomesodermin-expressing memory-like CD8 thymocytes.

View Article and Find Full Text PDF

Activated CD4 T cells are associated with protective immunity and autoimmunity. The manner in which the inflammatory potential of T cells and resultant autoimmunity is restrained is poorly understood. In this article, we demonstrate that T cell factor-1 (TCF1) negatively regulates the expression of IL-17 and related cytokines in activated CD4 T cells.

View Article and Find Full Text PDF