Publications by authors named "Jyothisri Kondapalli"

Huntington's disease (HD) is a progressive, neurodegenerative disease caused by a CAG triplet expansion in huntingtin. Although corticostriatal dysfunction has long been implicated in HD, the determinants and pathway specificity of this pathophysiology are not fully understood. Here, using a male zQ175 knock-in mouse model of HD we carry out optogenetic interrogation of intratelencephalic and pyramidal tract synapses with principal striatal spiny projection neurons (SPNs).

View Article and Find Full Text PDF

How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca) entry through Ca1 channels triggered Ca release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle.

View Article and Find Full Text PDF

The circuit mechanisms underlying fear-induced suppression of feeding are poorly understood. To help fill this gap, mice were fear conditioned, and the resulting changes in synaptic connectivity among the locus coeruleus (LC), the parabrachial nucleus (PBN), and the central nucleus of amygdala (CeA)-all of which are implicated in fear and feeding-were studied. LC neurons co-released noradrenaline and glutamate to excite PBN neurons and suppress feeding.

View Article and Find Full Text PDF

Ca channels with a Ca1.3 pore-forming α subunit have been implicated in both neurodegenerative and neuropsychiatric disorders, motivating the development of selective and potent inhibitors of Ca1.3 versus Ca1.

View Article and Find Full Text PDF

Monoamine oxidase (MAO) metabolizes cytosolic dopamine (DA), thereby limiting auto-oxidation, but is also thought to generate cytosolic hydrogen peroxide (HO). We show that MAO metabolism of DA does not increase cytosolic HO but leads to mitochondrial electron transport chain (ETC) activity. This is dependent upon MAO anchoring to the outer mitochondrial membrane and shuttling electrons through the intermembrane space to support the bioenergetic demands of phasic DA release.

View Article and Find Full Text PDF

Abnormal subthalamic nucleus (STN) activity is linked to impaired movement in Parkinson's disease (PD). The autonomous firing of STN neurons, which contributes to their tonic excitation of the extrastriatal basal ganglia and shapes their integration of synaptic input, is downregulated in PD models. Using electrophysiological, chemogenetic, genetic, and optical approaches, we find that chemogenetic activation of indirect pathway striatopallidal neurons downregulates intrinsic STN activity in normal mice but this effect is occluded in Parkinsonian mice.

View Article and Find Full Text PDF
Article Synopsis
  • Huntington's disease is a serious brain disorder caused by a faulty gene that creates a harmful protein.
  • Scientists created special tools called zinc finger proteins to lower the bad protein without affecting the good one, which helps brain cells work better.
  • Tests in cells and mice showed that this new treatment helps improve brain functions and is safe for longer-term use.
View Article and Find Full Text PDF

Huntington's disease (HD) is initially characterized by an inability to suppress unwanted movements, a deficit attributable to impaired synaptic activation of striatal indirect pathway spiny projection neurons (iSPNs). To better understand the mechanisms underlying this deficit, striatal neurons in ex vivo brain slices from mouse genetic models of HD were studied using electrophysiological, optical and biochemical approaches. Distal dendrites of iSPNs from symptomatic HD mice were hypoexcitable, a change that was attributable to increased association of dendritic Kv4 potassium channels with auxiliary KChIP subunits.

View Article and Find Full Text PDF

The motor symptoms of Parkinson's disease (PD) are thought to stem from an imbalance in the activity of striatal direct- and indirect-pathway spiny projection neurons (SPNs). Disease-induced alterations in the activity of networks controlling SPNs could contribute to this imbalance. One of these networks is anchored by the parafascicular nucleus (PFn) of the thalamus.

View Article and Find Full Text PDF

The ability of the Cav1 channel inhibitor isradipine to slow the loss of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons and the progression of Parkinson's disease (PD) is being tested in a phase 3 human clinical trial. But it is unclear whether and how chronic isradipine treatment will benefit SNc DA neurons in vivo. To pursue this question, isradipine was given systemically to mice at doses that achieved low nanomolar concentrations in plasma, near those achieved in patients.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra (SN). Although mitochondrial dysfunction and dysregulated α-synuclein (aSyn) expression are postulated to play a role in PD pathogenesis, it is still debated why neurons of the SN are targeted while neighboring dopaminergic neurons of the ventral tegmental area (VTA) are spared. Using electrochemical and imaging approaches, we investigated metabolic changes in cultured primary mouse midbrain dopaminergic neurons exposed to a parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP).

View Article and Find Full Text PDF

We examined adaptations in nucleus accumbens (NAc) neurons in mouse and rat peripheral nerve injury models of neuropathic pain. Injury selectively increased excitability of NAc shell indirect pathway spiny projection neurons (iSPNs) and altered their synaptic connectivity. Moreover, injury-induced tactile allodynia was reversed by inhibiting and exacerbated by exciting iSPNs, indicating that they not only participated in the central representation of pain, but gated activity in ascending nociceptive pathways.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The debilitating choreic movements that plague HD patients have been attributed to striatal degeneration induced by the loss of cortically supplied brain-derived neurotrophic factor (BDNF). Here, we show that in mouse models of early symptomatic HD, BDNF delivery to the striatum and its activation of tyrosine-related kinase B (TrkB) receptors were normal.

View Article and Find Full Text PDF

Loss of noradrenergic locus coeruleus (LC) neurons is a prominent feature of aging-related neurodegenerative diseases, such as Parkinson's disease (PD). The basis of this vulnerability is not understood. To explore possible physiological determinants, we studied LC neurons using electrophysiological and optical approaches in ex vivo mouse brain slices.

View Article and Find Full Text PDF

Alveolar hypoxia elicits increases in mitochondrial reactive oxygen species (ROS) signaling in pulmonary arterial (PA) smooth muscle cells (PASMCs), triggering hypoxic pulmonary vasoconstriction. Mice deficient in sirtuin (Sirt) 3, a nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase, demonstrate enhanced left ventricular hypertrophy after aortic banding, whereas cells from these mice reportedly exhibit augmented hypoxia-induced ROS signaling and hypoxia-inducible factor (HIF)-1 activation. We therefore tested whether deletion of Sirt3 would augment hypoxia-induced ROS signaling in PASMCs, thereby exacerbating the development of pulmonary hypertension (PH) and right ventricular hypertrophy.

View Article and Find Full Text PDF

Mitochondrial oxidant stress is widely viewed as being critical to pathogenesis in Parkinson's disease. But the origins of this stress are poorly defined. One possibility is that it arises from the metabolic demands associated with regenerative activity.

View Article and Find Full Text PDF

To clarify the relationship between reactive oxygen species (ROS) and cell death during ischemia-reperfusion (I/R), we studied cell death mechanisms in a cellular model of I/R. Oxidant stress during simulated ischemia was detected in the mitochondrial matrix using mito-roGFP, a ratiometric redox sensor, and by Mito-Sox Red oxidation. Reperfusion-induced death was attenuated by over-expression of Mn-superoxide dismutase (Mn-SOD) or mitochondrial phospholipid hydroperoxide glutathione peroxidase (mito-PHGPx), but not by catalase, mitochondria-targeted catalase, or Cu,Zn-SOD.

View Article and Find Full Text PDF

Parkinson's disease is a pervasive, ageing-related neurodegenerative disease the cardinal motor symptoms of which reflect the loss of a small group of neurons, the dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed as being responsible for this loss, but why these particular neurons should be stressed is a mystery. Here we show, using transgenic mice that expressed a redox-sensitive variant of green fluorescent protein targeted to the mitochondrial matrix, that the engagement of plasma membrane L-type calcium channels during normal autonomous pacemaking created an oxidant stress that was specific to vulnerable SNc dopaminergic neurons.

View Article and Find Full Text PDF

Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death.

View Article and Find Full Text PDF

We demonstrated previously that laminar shear stress (LSS) enhances human coronary artery endothelial cell (HCAEC) wound closure via a vascular endothelial cadherin (VE-cadherin)-dependent mechanism. VE-cadherin can interact with p120 catenin (p120(ctn)) to mediate cell locomotion and proliferation. In this study, we hypothesized that p120(ctn) and an interacting protein, Kaiso, a transcriptional factor with which p120(ctn) may interact, would be expressed differentially at the wound border and away from the wound border in HCAEC exposed to LSS.

View Article and Find Full Text PDF