Aim: To generate and characterize a telomerase-immortalized human retinal microvascular endothelial cell (HREC) line. This cell line may be utilized as an in vitro model to study the molecular basis of several diseases of the human retina.
Materials And Methods: Primary retinal neuronal cells were isolated and transfected with plasmid encoding full-length human telomerase reverse transcriptase (hTERT).
Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2.
View Article and Find Full Text PDFPurpose: The purpose of this study was to determine the effects of down-regulation of Aquaporin 1 (AQP1) and Aquaporin 5 (AQP5) on cell proliferation and migration in human corneal endothelial (HCEC) and human corneal epithelial (CEPI17) cell lines, respectively.
Methods: AQP1 and AQP5 were down regulated using siRNA following lipofectamine-mediated transfection in corneal endothelial and epithelial cells, respectively. Down-regulation was confirmed using RT-PCR, indirect immunofluorescence, and immunoblot analysis.
Purpose: 14-3-3 is a highly conserved, ubiquitously expressed family of proteins. At least seven mammalian isoforms (beta, epsilon, gamma, eta, theta, sigma, and zeta) are known. These proteins associate with over 200 different target molecules and activate several downstream signaling cascades involved in the regulation of metabolism, cell cycle, apoptosis, protein trafficking, transcription, stress responses, and malignant transformations.
View Article and Find Full Text PDF