Publications by authors named "Juying Li"

The environmental fate of a plant growth regulator cyclanilide was studied in this paper. The degradation, adsorption, and migration behaviors of cyclanilide were detailly measured in the laboratory. The results showed that the DT of cyclanilide degradation in the Jiangxi red, Taihu paddy, Changshu wushan, Shaanxi tide, and Dongbei black soils was 42.

View Article and Find Full Text PDF

Quantifying the root uptake of hydrophobic organic contaminants (HOCs) by plants remains challenging due to the lack of data on the freely available fractions of HOCs in soil porewater. We therefore hypothesized that a passive sampler could act as a useful tool to evaluate the root uptake potential and pathways of HOCs by plants in soil. We tested this hypothesis by exploring the uptake of polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs) by carrot and lettuce with the codeployment of passive samplers in a contaminated soil system.

View Article and Find Full Text PDF

This study systematically investigated the pollution levels and migration trends of PBDEs in soils and plants around engineering plastics factory, and identified the ecological risks of PBDEs in the environment around typical pollution sources.The results showed that 13 kinds of PBDEs were widely detected in the surrounding areas, and the concentration level was higher than the general environmental pollution level. The total PBDE concentrations (∑PBDEs) in soils ranged from 14.

View Article and Find Full Text PDF

Soils represent crucial sinks for pharmaceuticals and microplastics, making them hotspots for pharmaceuticals and plastic pollution. Despite extensive research on the toxicity of pharmaceuticals and microplastics individually, there is limited understanding of their combined effects on soil biota. This study focused on the earthworm Eisenia fetida as test organism to evaluate the biotoxicity and bioaccumulation of the typical pharmaceutical naproxen and microplastics in earthworms.

View Article and Find Full Text PDF

Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH) metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu and Cd) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques.

View Article and Find Full Text PDF

It remains challenging to establish reliable links between transformation products (TPs) of contaminants and corresponding microbes. This challenge arises due to the sophisticated experimental regime required for TP discovery and the compositional nature of 16S rRNA gene amplicon sequencing and mass spectrometry datasets, which can potentially confound statistical inference. In this study, we present a new strategy by combining the use of H-labeled Stable Isotope-Assisted Metabolomics (H-SIAM) with a neural network-based algorithm (i.

View Article and Find Full Text PDF

In this work, the characteristics and mechanisms for atrazine adsorption-desorption with 9 types of soils were investigated with batch equilibrium studies, elemental analyses, infrared spectroscopy, and UV‒visible spectroscopy. The atrazine sorption data for the 9 soils showed better fits with the Freundlich model than the Langmuir model, except with Red earth in Jiangxi (REJ) The results showed that the adsorption capacity was positively correlated with the organic matter (OM) content and negatively correlated with cation-exchange capacity (CEC) and pH. UV‒visible spectroscopy showed that dissolved organic matter (DOM) in the soil enhanced atrazine adsorption, but the adsorption on different DOM fractions was quite different.

View Article and Find Full Text PDF

The increasing applications of emerging per- and polyfluoroalkyl substances (PFAS) have raised global concern. However, the release of emerging PFAS from the fluorochemical industry remains unclear. Herein, the occurrence of 48 emerging and legacy PFAS in wastewater from 10 fluorochemical manufacturers and mass flows of PFAS in a centralized wastewater treatment plant were investigated.

View Article and Find Full Text PDF

Recently, microplastics (MPs) and nanoplastics (NPs) contamination is a worldwide problem owing to the immense usage of plastic commodities. Thus, the environmental risks by MPs and NPs demand the application of innovative, efficient, and sustainable technologies to control the pollution of plastic particles. Regarding this, numerous technologies, including adsorption, coagulation, filtration, bioremediation, chemical precipitation, and photocatalysis, have been engaged to eradicate MPs and NPs from contaminated waters.

View Article and Find Full Text PDF

Bisphenol S (BPS), being structurally similar to bisphenol A (BPA), has been widely used as an alternative to BPA in industrial applications. However, in-depth studies on the environmental behavior and fate of BPS in various soils have been rarely reported. Here, C-labeled BPS was used to investigate its mineralization, bound residues (BRs) formation and extractable residues (ERs) in three soils for 64 days.

View Article and Find Full Text PDF

A ratiometric nitenpyram (NIT) upconversion luminescence sensor UCNPs-PMOF was fabricated from a metal-porphyrin organic framework (PMOF) and pretreated UCNPs. The reaction between NIT and the PMOF releases the HTCPP (5,10,15,20-tetracarboxyl phenyl) porphyrin ligand, which enhances the absorption of the system at 650 nm, and reduces the upconversion emission intensity of the sensor at 654 nm through a luminescence resonance energy transfer (LRET) mechanism, thus achieving the quantitative detection of NIT. The detection limit was 0.

View Article and Find Full Text PDF

With the widespread production and usage, silver nanoparticles (AgNPs) can be extensively found in the aquatic environment and co-exist with other pollutants for a prolonged time, leading to a more complex ecological risk in natural waters. In this work, the model freshwater algae Euglena sp. was selected to study the toxicity of AgNPs and explore their influences on the toxicity of two frequently detected personal care products, triclosan (TCS) and galaxolide (HHCB).

View Article and Find Full Text PDF

Microplastics (MPs) are frequently detected in natural waters and usually acted as vectors for other pollutants, leading to possible threats to aquatic organisms. This study investigated the impact of polystyrene MPs (PS MPs) with different diameters on two algae Phaeodactylum tricornutum and Euglena sp., and the combined toxicity of PS MPs and diclofenac (DCF) in two algae was also studied.

View Article and Find Full Text PDF

Due to the strict rules and restrictions on the utilization of bisphenol A (BPA) around the world, an emerging endocrine disrupting chemical, bisphenol S (BPS) has been widely utilized as a substitute and frequently detected in the environment, even in the human body. Although it has been widely studied in the aquatic systems, the fate and toxicological effect of BPS in soil invertebrates are poorly known. This study presented a comprehensive exploration into the attenuation, bioaccumulation, and physiological distribution of BPS in an ecologically significant soil invertebrate, as well as its subsequent ecotoxicological effect to earthworm for the first time.

View Article and Find Full Text PDF

Microplastics and nanoplastics are being assumed as emerging toxic pollutants owing to their unique persistent physicochemical attributes, chemical stability, and nonbiodegradable nature. Owing to their possible toxicological impacts (not only on aquatic biota but also on humans), scientific communities are developing innovative technologies to remove microplastics and nanoplastics from polluted waters. Various technologies, including adsorption, coagulation, photocatalysis, bioremediation, and filtration, have been developed and employed to eliminate microplastics and nanoplastics.

View Article and Find Full Text PDF

The stability and applicability of UiO-66-(NH) metal-organic framework (MOF) nanoparticles (NPs) were successfully improved in this study by incorporating them into alginate biopolymer during the manifestation of crosslinking agents-calcium chloride and glutaraldehyde-via a simple, environment-friendly, and facile approach to eradicate potentially toxic metals (PTMs) such as Cr, Cr, Cu, and Cd from water and real electroplating wastewater. Hydrophilic functional groups (i.e.

View Article and Find Full Text PDF

Bisphenol compounds (BPs) are usually applied in the production of school supplies, however, little is known on the occurrence of BPs in school supplies. In this study, 15 BPs were detected in 121 samples of school supplies collected from commercial market. Among all compounds studied, BPA, BPF, and BPS were the dominant compounds in school supplies with the detection frequency of 93.

View Article and Find Full Text PDF

Bisphenol S (BPS) is a contaminant of emerging concern, its exposure and phytotoxicity towards plants, however, is scarce. This study aimed at revealing the BPS translocation in plants and phytotoxicity in the presence of Polystyrene (PS) microplastics. Results found that BPS and PS showed no effect on plant growth, indicating the tolerance of plants towards BPS and PS co-contamination.

View Article and Find Full Text PDF

Bisphenol S (BPS) has been widely applied as a replacement for BPA in industrial application, leading to the frequent detection in the environment. However, its impact on soil microbial communities has not been well reported. Here, effects of BPS exposure on soil microbial communities in the presence of polystyrene (PS) microplastics were revealed.

View Article and Find Full Text PDF

Although the toxicity of triclosan (TCS) and galaxolide (HHCB) in freshwater has been reported, little study is shed light on their molecular toxicity mechanism and the regulation of humic acid (HA). In this work, freshwater algae E. gracilis was selected to explore these processes, and the molecular toxicity mechanism was analyzed by metabolomics.

View Article and Find Full Text PDF

Bisphenol analogues (BPs) are ubiquitous emerging contaminants in water environments and have wide polarity ranges (1.65 < log K < 7.2).

View Article and Find Full Text PDF

The occurrence and health risk of hexabromocyclododecane (HBCD), a brominated flame retardant with its three diastereoisomers, in drinking water sources in the lower Yangtze River in China was investigated. Its concentration ranged from 0.58 to 3.

View Article and Find Full Text PDF

Diclofenac (DCF) is a common pharmaceutical that widely distributed in natural waters, and has been received an increasing attention because of its potential toxicity. Additionally, microplastics are also ubiquitous pollutants in natural waters, but little information is available on their interactions. In this study, the sorption of DCF on polystyrene microplastics (PS MPs) with different particle sizes was investigated, and the influence of environmental factors was also explored.

View Article and Find Full Text PDF

With thousands of chemicals discharged into the aquatic environment, it is necessary to identify those that are likely to be having the greatest impact on wildlife to better protect the ecosystem. A risk ranking approach was developed to compare the ecotoxicological risk of chemicals on aquatic wildlife with a wide range of environmental measurement data and ecotoxicity data. Nineteen metals including some rarely monitored ones including antimony (Sb), molybdenum (Mo), cobalt (Co), vanadium (V), titanium (Ti) and thallium (Tl) in the lower Yangtze River were risk ranked as a case study.

View Article and Find Full Text PDF

Microplastics (MPs) have received an increasing attention because of their ubiquitous presence and aquatic toxicity associated with MPs and MP-bound contaminants in the natural water. This review is to critically examine the chemical additives leached from MPs, the altered contaminant behaviors and the resulting changes in their aquatic ecotoxicity. Available data suggest that heavy metals Zn, Cr, Pb, and Cd regulated and present in plastics at the sub-mg g to mg g level can leach a significant amount depending on MPs size, aging, pH, and salinity conditions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnmier1ktrgn510drhurpuc4ahool04uh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once