Publications by authors named "Juyeon Yi"

We study the first-passage problem for a partially reactive target by N identical diffusive particles in a finite d-dimensional space, laying a focus on the effects of the partial reactivity when searchers are initially excluded from the target region. By solving the Fokker-Planck equation, we obtain the mean first-passage time that exhibits a power-law dependence on the number of searchers as τ_{N}∼N^{-α}, proving that the exponent α varies with dimensionality, reactivity, and the number of searchers, and specifying conditions in which crossovers between different exponents occur. We confirm the validity of our analytic results by performing Langevin dynamics simulations for various sets of system parameters.

View Article and Find Full Text PDF

We study the fluctuations of work caused by applying cyclic perturbations and obtain an exact sum rule satisfied by the moments of work for a broad class of quantum stationary ensembles. In the case of the canonical ensemble, the sum rule reproduces the Jarzynski equality. The sum rule can also be simplified into a linear relationship between the work average and the second moment of work, which we numerically confirm via an exact diagonalization of a spin model system.

View Article and Find Full Text PDF

We study the target searches of interacting Brownian particles in a finite domain, focusing on the effect of interparticle interactions on the search time. We derive the integral equation for the mean first-passage time and acquire its solution as a series expansion in the orders of the Mayer function. We analytically obtain the leading order correction to the search time for dilute systems, which are most relevant to target search problems and prove a universal relation given by the particle density and the second virial coefficient.

View Article and Find Full Text PDF

Two approaches are outlined to characterize the fluctuation behavior of work applied to a system by a slow change of a parameter. One approach uses the adiabatic theorems of quantum and classical mechanics, and the other one is based on the behavior of the correlations of the generalized coordinate that is conjugate to the changed parameter. Criteria are obtained under which the work done on small thermally isolated as well as on open systems ceases to fluctuate in a quasistatic process.

View Article and Find Full Text PDF

Characterizing an odor quality is difficult for humans. Ever-increasing physiological and behavioral studies have characterized odor quality and demonstrated high performance of human odor categorization. However, there are no precise methods for measuring the multidimensional axis of an odor quality.

View Article and Find Full Text PDF

Mammalian genomes are well established, and highly conserved regions within odorant receptors that are unique from other G-protein coupled receptors have been identified. Numerous functional studies have focused on specific conserved amino acids motifs; however, not all conserved motifs have been sufficiently characterized. Here, we identified a highly conserved 18 amino acid sequence motif within transmembrane domain seven (CAS-TM7) which was identified by aligning odorant receptor sequences.

View Article and Find Full Text PDF

A cyclically working quantum-mechanical engine that operates at a single temperature is proposed. Its energy input is delivered by a quantum measurement. The functioning of the engine does not require any feedback control.

View Article and Find Full Text PDF

Counterion condensation onto a charged cylinder, known as the Manning transition, has received a great deal of attention since it is essential to understand the properties of polyelectrolytes in ionic solutions. However, the current understanding is still far from complete and poses a puzzling question: While the strong-coupling theory valid at large ionic correlations suggests a discontinuous nature of the counterion condensation, the mean-field theory always predicts a continuous transition at the same critical point. This naturally leads to a question how one can reconcile the mean-field theory with the strong-coupling prediction.

View Article and Find Full Text PDF

We consider a system consisting of a charged cylinder in the presence of neutralizing counterions. This system is well known to exhibit the Manning transition of counterion condensation onto the charged cylinder. We study the criticality and the scaling properties of the Manning transition, analyzing involved thermodynamic quantities such as condensed fraction, its fluctuation, and heat capacity.

View Article and Find Full Text PDF

Separation of enantiomers by flows is a promising chiral resolution method using cost-effective microfluidics. Notwithstanding a number of experimental and numerical studies, a fundamental understanding still remains elusive, and an important question as to whether it is possible to specify common physical properties of flows that induce separation has not been addressed. Here, we study the separation of rigid chiral objects of an arbitrary shape induced by a linear flow field at low Reynolds numbers.

View Article and Find Full Text PDF

We examine energy and particle exchange between finite-sized quantum systems and find a new form of nonequilibrium state. The exchange rate undergoes stepwise evolution in time, and its magnitude and sign dramatically change according to system size differences. The origin lies in interference effects contributed by multiply scattered waves at system boundaries.

View Article and Find Full Text PDF

We theoretically investigate the membrane fluctuations of red blood cells with focus laid on the role of the cytoskeleton, viewing the system as a membrane coupled to a sparse spring network. This model is exactly solvable and enables us to examine the coupling strength dependence of the membrane undulation. We find that the coupling modifies the fluctuation spectrum at wavelengths longer than the mesh size of the network, while leaving the fluid-like behavior of the membrane intact at shorter wavelengths.

View Article and Find Full Text PDF

We theoretically analyze diffusion trajectories of an anisotropic object moving on a two dimensional space in the absence of an external field. In determining diffusion parameters associated with the shape anisotropy, we devise a measure based on the gyration tensor and obtain its analytic expression exactly. Its efficiency and statistical convergence are examined in comparison with the fourth cumulant of particle displacement.

View Article and Find Full Text PDF

We study the thermodynamic notion of quantum projective measurements, using a framework for the fluctuation theorem of nonequilibrium work. The energy change induced by measurements satisfies the Jarzynski equality, leading us to the interpretation that the quantum projective measurements perform nonequilibrium work on the measured system. The work average exhibits intriguing limiting behaviors due to the heat-up effect caused by repeated measurements and the quantum Zeno effect caused by measurements of an infinite frequency.

View Article and Find Full Text PDF

We consider a single Josephson junction in the presence of time varying gate charge, and examine the nonequilibrium work done by the charge control in the framework of fluctuation theorems. Assuming first a high quality junction with negligible Ohmic current, we obtain the probability distribution functions of the work and confirm the Crooks relation to give the estimation of the free energy changes ΔF=0. The reliability of ΔF estimated from the Jarzynksi equality is crucially dependent on protocol parameters, while the Bennett's acceptance ratio method yields consistently ΔF=0.

View Article and Find Full Text PDF

The estimate of free energy changes based on Bennett's acceptance ratio method is examined in several limiting cases and compared with other estimates based on the Jarzynski equality and on the Crooks relation. While the absolute amount of the dissipated work, defined as the surplus of the average work over the free energy difference, limits the practical applicability of Jarzynski's and Crooks' methods, the reliability of Bennett's approach is restricted by the difference of the dissipated works in the forward and the backward processes. We illustrate these points by considering a Gaussian chain and a hairpin chain which both are extended during the forward and accordingly compressed during the backward protocols.

View Article and Find Full Text PDF

We consider bosons in a harmonic trap and investigate the fluctuations of the work performed by an adiabatic change of the trap curvature. Depending on the reservoir conditions such as temperature and chemical potential that provide the initial equilibrium state, the exponentiated work average (EWA) defined in the context of the Crooks relation and the Jarzynski equality may diverge if the trap becomes wider. We investigate how the probability distribution function (PDF) of the work signals this divergence.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores work done on a noninteracting electron gas in a ring when a magnetic field is applied, confirming that the Jarzynski equality holds, using grand potential instead of free energy.
  • Work distribution is temperature-dependent; at high temperatures, it resembles a Gaussian distribution, while at low temperatures, it becomes multimodal and the free energy difference is significant.
  • The findings emphasize how the number of electrons in the system influences the statistics of work performed.
View Article and Find Full Text PDF

We consider N fermionic particles in a harmonic trap initially prepared in a thermal equilibrium state at temperature β^{-1} and examine the probability density function (pdf) of the work done by a magnetic field slowly varying in time. The behavior of the pdf crucially depends on the number of particles N but also on the temperature. At high temperatures (β≪1) the pdf is given by an asymmetric Laplace distribution for a single particle, and for many particles it approaches a Gaussian distribution with variance proportional to N/β(2).

View Article and Find Full Text PDF

We propose an efficient method for nonperturbative calculation of Green's function in a correlated electron system. The key idea of the method is to project out irrelevant operators having zero norm in the ground state, which we refer to as effective projection theory. We apply the method to a mesoscopic Anderson model and show that for a given wavefunction ansatz, equations of motion can be closed only by relevant operators, allowing easy calculation of the zero-temperature Green's function.

View Article and Find Full Text PDF

We consider two interacting semiflexible charged chains of length L(c) under shape fluctuations, where the interplay of electric and mechanical properties is found to yield rigidity-sensitive charge modulation and interdistance-dependent persistence length ℓ(p). The resulting conformation is characterized by equilibrium force between the chains and their fractal dimensions. It turns out that ℓ(p) and L(c) emerge as critical factors to determine the force nature as well as chain shapes.

View Article and Find Full Text PDF

We study the effect of dumbbell-like counterions on the interactions between similarly charged surfaces. Via a systematic study using Monte Carlo simulations and field theory, we fully consider electrostatic correlations and ion structure and find that their intricate coupling determines the equilibrium phase behaviors. In particular, an energetic bridging mechanism is revealed to cause surface attractions for a finite range of surface separations, even in the Poisson-Boltzmann limit.

View Article and Find Full Text PDF
Magnetization of circular DNA.

Phys Rev E Stat Nonlin Soft Matter Phys

July 2007

We investigate the orbital magnetization of DNA molecules in the relaxed circular structure. It is shown that DNA of homogeneous sequence exhibits paramagnetic responses to external magnetic fields and, surprisingly, the magnetism of circular DNA is equivalent to that of linear DNA. This turns out to result from the fact that the electron population is localized largely on one of the strands.

View Article and Find Full Text PDF

DNA has been at the center of an imaging effort since the invention of the scanning tunneling microscope (STM). In some of the STM imaging reports the molecules appeared with negative contrast, i.e.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionulfrmf467alelusfmbl90vvoor3k8d71): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once