In recent years, agricultural non-point source pollution (ANPSP) has become increasingly prominent, and nitrogen plays an important role in ANPSP. Therefore, we carried out traditional flooded irrigation (TFI) experiments in the paddy field, and applied HYDRUS-2D model to simulate the nitrogen transport in this study. Three observation points A1, A2, and A3 were arranged on the diagonal of the paddy field.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2021
Water pollution from surface runoff is an important non-point pollution source, which has been a great threat to our environment. The model proposed by Gao et al. (2004) is of great significance to solve the non-point source pollution problem, which is a numerical advection-diffusion equation (ADE) model for chemical transport from soil to surface runoff.
View Article and Find Full Text PDFTo gain a better understanding of the microbial community in salt-freshwater mixing zones, in this study, the influence of seasonal variation on the groundwater microbial community was evaluated by high throughput 16S rDNA gene sequencing. The results showed that notable changes in microbial community occurred in a salt-freshwater mixing zone and the groundwater samples in the dry season were more saline than those in the wet season. The increase in precipitation during the wet season relieved local seawater intrusion.
View Article and Find Full Text PDFSeawater intrusion and brine water/freshwater interaction have significantly affected agriculture, industry and public water supply at Laizhou Bay, Shandong Province, China. In this study, a two-dimensional SEAWAT model is developed to simulate the seawater intrusion to coastal aquifers and brine water/fresh water interaction in the south of Laizhou Bay. This model is applied to predict the seawater intrusion and brine water/freshwater interface development in the coming years.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2018
Batch experiments have been carried out to study the adsorption of heavy metals in soils, and the migration and transformation of hexavalent chromium (Cr(VI)) in the soil of a vegetable base were studied by dynamic adsorption and desorption soil column experiments. The aim of this study was to investigate the effect of initial concentration and pH value on the adsorption process of Cr(VI). Breakthrough curve were used to evaluate the capacity of Cr(VI) adsorption in soil columns.
View Article and Find Full Text PDFAgricultural non-point source pollution is a major factor in surface water and groundwater pollution, especially for nitrogen (N) pollution. In this paper, an experiment was conducted in a direct-seeded paddy field under traditional continuously flooded irrigation (CFI). The water movement and N transport and transformation were simulated via the Hydrus-1D model, and the model was calibrated using field measurements.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2016
Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage.
View Article and Find Full Text PDFAccurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area.
View Article and Find Full Text PDFThe mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff.
View Article and Find Full Text PDF