The self-assembled monolayer (SAM) technique, known for its customizable molecular segments and active end groups, is widely recognized as a powerful tool for regulating the interfacial properties of high-energy-density lithium metal batteries. However, it remains unclear how the degree of long-range order in SAMs affects the solid electrolyte interphase (SEI). In this study, we precisely controlled the hydrolysis of silanes to construct monolayers with varying degrees of long-range order and investigated their effects on the SEI nanostructure and lithium anode performance.
View Article and Find Full Text PDFThe pursuit of high energy density in lithium batteries has driven the development of efficient electrodes with low levels of inactive components. Herein, a facile approach involving the use of π-π stacked nigrosine@carbon nanotube nanocomposites as an all-in-one additive for a LiFePO cathode has been developed. This design significantly reduces the proportion of inactive substances within the cathode, resulting in a battery that exhibits a high specific capacity of 143 mAh g at a 1 C rate and shows commendable cyclic performance.
View Article and Find Full Text PDF