IEEE Trans Neural Netw
October 2012
A general and efficient design approach using a radial basis function (RBF) neural classifier to cope with small training sets of high dimension, which is a problem frequently encountered in face recognition, is presented. In order to avoid overfitting and reduce the computational burden, face features are first extracted by the principal component analysis (PCA) method. Then, the resulting features are further processed by the Fisher's linear discriminant (FLD) technique to acquire lower-dimensional discriminant patterns.
View Article and Find Full Text PDFLow-dimensional feature representation with enhanced discriminatory power is of paramount importance to face recognition (FR) systems. Most of traditional linear discriminant analysis (LDA)-based methods suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the "small sample size" (SSS) problem which is often encountered in FR tasks.
View Article and Find Full Text PDFIEEE Trans Neural Netw
October 2012
Techniques that can introduce low-dimensional feature representation with enhanced discriminatory power is of paramount importance in face recognition (FR) systems. It is well known that the distribution of face images, under a perceivable variation in viewpoint, illumination or facial expression, is highly nonlinear and complex. It is, therefore, not surprising that linear techniques, such as those based on principle component analysis (PCA) or linear discriminant analysis (LDA), cannot provide reliable and robust solutions to those FR problems with complex face variations.
View Article and Find Full Text PDFIEEE Trans Neural Netw
January 2006
In this paper, we propose a novel ensemble-based approach to boost performance of traditional Linear Discriminant Analysis (LDA)-based methods used in face recognition. The ensemble-based approach is based on the recently emerged technique known as "boosting". However, it is generally believed that boosting-like learning rules are not suited to a strong and stable learner such as LDA.
View Article and Find Full Text PDF