To investigate the role of nitric oxide in controlling endothelial progenitor (EPC) and hematopoietic stem cell (HSC) mobilization, wild-type mice, L-NAME treated WT and eNOS-/- mice received either PBS or G-CSF for 5 days. Under unstimulated conditions bone marrow of either L-NAME treated WT and eNOS-/- mice, representing acute and chronic NO-deficiency, showed higher CD34(+)Flk-I+ EPC numbers compared to their WT littermates. Furthermore, CD34(+)Flk-I+ progenitors under NO-deficient conditions showed a higher cell turn over since the proliferation and apoptosis activity under in vivo as well as in vitro conditions were enhanced.
View Article and Find Full Text PDFObjectives: We investigated whether human age-related endothelial dysfunction is accompanied by quantitative and qualitative alterations of the endothelial progenitor cell (EPC) pool.
Background: Circulating progenitor cells with an endothelial phenotype contribute to the regeneration and repair of the vessel wall. An association between the loss of endothelial integrity and EPC modification may provide a background to study the mechanistic nature of such age-related vascular changes.