Publications by authors named "Jutta Luettmer-Strathmann"

Polymer chains undergoing adsorption are expected to show universal critical behavior which may be investigated using partition function zeros. The focus of this work is the adsorption transition for a continuum chain, allowing for investigation of a continuous range of the attractive interaction and comparison with recent high-precision lattice model studies. The partition function (Fisher) zeros for a tangent-hard-sphere N-mer chain (monomer diameter σ) tethered to a flat wall with an attractive square-well potential (range λσ, depth ε) have been computed for chains up to N=1280 with 0.

View Article and Find Full Text PDF

Motor proteins play an important role in many biological processes and have inspired the development of synthetic analogues. Molecular walkers, such as kinesin, dynein, and myosin V, fulfill a diverse set of functions including transporting cargo along tracks, pulling molecules through membranes, and deforming fibers. The complexity of molecular motors and their environment makes it difficult to model the detailed dynamics of molecular walkers over long time scales.

View Article and Find Full Text PDF

Thermophoresis or thermodiffusion has become an important tool to monitor protein-ligand binding as it is very sensitive to the nature of solute-water interactions. However, the microscopic mechanisms underlying thermodiffusion in protein systems are poorly understood at this time. One reason is the difficulty to separate the effects of the protein system of interest from the effects of buffers that are added to stabilize the proteins.

View Article and Find Full Text PDF

Many of the biological functions of proteins are closely associated with their ability to bind ligands and change conformations in response to changing conditions. Since binding state and conformation of a protein affect its response to a temperature gradient, they may be probed with thermophoresis. In recent years, thermophoretic techniques to investigate biomolecular interactions, quantify ligand binding, and probe conformational changes have become established.

View Article and Find Full Text PDF

The zeros of the canonical partition functions for a flexible polymer chain tethered to an attractive flat surface are computed for chains up to length N = 1536. We use a bond-fluctuation model for the polymer and obtain the density of states for the tethered chain by Wang-Landau sampling. The partition function zeros in the complex e(β)-plane are symmetric about the real axis and densest in a boundary region that has the shape of a nearly closed circle, centered at the origin, terminated by two flaring tails.

View Article and Find Full Text PDF

An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model.

View Article and Find Full Text PDF

Metal surfaces in contact with water, surfactants and biopolymers experience attractive polarization owing to induced charges. This fundamental physical interaction complements stronger epitaxial and covalent surface interactions and remains difficult to measure experimentally. We present a first step to quantify polarization on even gold (Au) surfaces in contact with water and with aqueous solutions of peptides of different charge state (A3 and Flg-Na3) by molecular dynamics simulation in all-atomic resolution and a posteriori computation of the image potential.

View Article and Find Full Text PDF

The dynamics of an isolated polymer chain has irreversible aspects that lead to the decorrelation of configurational properties over time. For simple mechanical models with time reversible equations of motion, the irreversibility is a consequence of the chaotic nature of the dynamics which, for a many body system, is expected to result in ergodic mixing. Here we study a fixed bond length N-mer interaction-site chain with fixed total energy and angular momentum.

View Article and Find Full Text PDF

A polymer chain tethered to a surface may be compact or extended, adsorbed or desorbed, depending on interactions with the surface and the surrounding solvent. This leads to a rich phase diagram with a variety of transitions. To investigate these transitions we have performed Monte Carlo simulations of a bond fluctuation model with Wang-Landau and umbrella sampling algorithms in a two-dimensional state space.

View Article and Find Full Text PDF

In this work the thermal diffusion behavior of binary mixtures of linear alkanes (heptane, nonane, undecane, tridecane, pentadecane, heptadecane) in benzene has been investigated by thermal diffusion forced Rayleigh scattering (TDFRS) for a range of concentrations and temperatures. The Soret coefficient ST of the alkane was found to be negative for these n-alkane/benzene mixtures indicating that the alkanes are enriched in the warmer regions of the liquid mixtures. For the compositions investigated in this work, the magnitude of the Soret coefficient decreases with increasing chain length and increasing alkane content of the mixtures.

View Article and Find Full Text PDF

We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed.

View Article and Find Full Text PDF

Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond fluctuation model, where differences in the interaction energies between nonbonded nearest neighbors distinguish the two components of a blend.

View Article and Find Full Text PDF

Processes on different length scales affect the dynamics of chain molecules. The friction experienced by a short chain segment depends on both small-scale chain properties and on the local environment of the segment. As a consequence, the (monomeric) friction coefficients of the two components of a binary polymer blend will, in general, differ from each other and from the friction coefficients of the corresponding melts.

View Article and Find Full Text PDF

Soret coefficients of the ternary system of poly(ethylene oxide) in mixed water/ethanol solvent were measured over a wide solvent composition range by means of thermal diffusion forced Rayleigh scattering. The Soret coefficient S(T) of the polymer was found to change sign as the water content of the solvent increases with the sign change taking place at a water mass fraction of 0.83 at a temperature of 22 degrees C.

View Article and Find Full Text PDF

Thermal diffusion forced Rayleigh scattering results on thermal diffusion of poly(ethylene oxide) (PEO) in ethanol/water mixtures are presented. In water-rich solvent mixtures, PEO is found to migrate towards regions of lower temperature. This is typical for polymer solutions and corresponds to a positive Soret coefficient of PEO.

View Article and Find Full Text PDF