Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between -90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (-90 to -3 mV).
View Article and Find Full Text PDFFor many biomedical applications, material surfaces should not only prevent unspecific protein adsorption and bacterial attachment as in many other applications in the food, health, or marine industry, but they should also promote the adhesion of tissue cells. In order to take a first step toward the challenging development of protein and bacteria-repelling and cell-adhesion-promoting materials, polyamine and poly(amido amine) surface coatings with terminal amine groups and varying structure (dendrimer, oligomer, polymer) were immobilized on model surfaces via silane chemistry. Physicochemical analysis showed that all modifications are hydrophilic (contact angles <60°) and possess similar surface free energies (SFEs, ∼46-54 mN/m), whereas their amine group densities and zeta potentials at physiological conditions (pH 7.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2019
Besides their use for drug and gene delivery, dendrimer molecules are also favorable for the design of new surface coatings for orthopedic and dental implants due to the wide variety of functional terminal groups and their multivalent character. The purpose of this work was to observe how covalently immobilized polyamidoamine (PAMAM) dendrimer molecules with different terminal chemical groups influenced serum protein adsorption and osteoblast behavior. To this end, fifth-generation PAMAM dendrimers were immobilized on silicon surfaces with an anhydride-containing silane coupling agent which results in positively charged terminal NH-groups.
View Article and Find Full Text PDF