Protein aggregates arise naturally under normal physiological conditions, but their formation is accelerated by age or stress-induced protein misfolding. When the stressful event dissolves, these aggregates are removed by mechanisms, such as aggrephagy, chaperone-mediated autophagy, refolding attempts, or the proteasome. It was recently shown that mitochondria in yeast cells may support these primarily cytosolic processes.
View Article and Find Full Text PDFThe turnover of the epidermis beginning with the progenitor cells in the basal layer to the fully differentiated corneocytes is tightly regulated by calcium. Calcium more than anything else promotes the differentiation of keratinocytes which implies the need for a calcium gradient with low concentrations in the stratum basale and high concentrations in the stratum granulosum. One of the hallmarks of skin aging is a collapse of this gradient that has a direct impact on the epidermal fitness.
View Article and Find Full Text PDFIn recent decades Saccharomyces cerevisiae has proven to be one of the most valuable model organisms of aging research. Pathways such as autophagy or the effect of substances like resveratrol and spermidine that prolong the replicative as well as chronological lifespan of cells were described for the first time in S. cerevisiae.
View Article and Find Full Text PDFIn recent years it turned out that there is not only extensive communication between the nucleus and mitochondria but also between mitochondria and lipid droplets (LDs) as well. We were able to demonstrate that a number of proteins shuttle between LDs and mitochondria and it depends on the metabolic state of the cell on which organelle these proteins are predominantly localized. Responsible for the localization of the particular proteins is a protein domain consisting of two -helices, which we termed V-domain according to the predicted structure.
View Article and Find Full Text PDFThe main function of the epidermis is to protect us against a multitude of hostile attacks from the environment. Its main cell type, the keratinocytes have a sophisticated system of different proteins and lipids available to form the cornified envelope, which is responsible for the barrier function of the skin. During ageing, dramatic changes are taking place.
View Article and Find Full Text PDFThe use of expression profiling to explore a cell's transcriptional landscape has exploded in recent years. In many cases, however, the very limited amount of starting material poses a major problem, making the amplification of the isolated RNA obligatory. The most prominent amplification method used was developed by the Eberwine lab in 1990: cDNA synthesis is started with an oligo(dT) primer containing a T7 RNA polymerase promoter.
View Article and Find Full Text PDFThe dmrtgene family of vertebrates comprises several transcription factors that share a highly conserved DNA-binding domain, the DM domain. Like some of their invertebrate counterparts, e.g.
View Article and Find Full Text PDFThe teleost Xiphophorus provides a genetically well-described model system to study the molecular processes underlying melanoma formation. As transcriptional deregulation is a widespread phenomenon in many tumors, we have studied the regulation of melanoma-specific gene expression in this fish. A central regulator of melanocyte specific gene expression, which is also a marker for melanomas, is the transcription factor microphthalmia-associated transcription factor (MITF).
View Article and Find Full Text PDFThe Xmrk oncogene involved in melanoma formation in the fish Xiphophorus was formed relatively recently by duplication of the epidermal growth factor co-orthologue egfrb. In the platyfish X. maculatus, Xmrk is located close to the major sex-determining locus in a subtelomeric region of the X and Y sex chromosomes that frequently undergoes duplications and other rearrangements.
View Article and Find Full Text PDFIn mammals, the unique midkine (mdk) gene encodes a secreted heparin-binding growth factor with neurotrophic activity. Here, we show the presence of two functional mdk genes named mdka and mdkb in zebrafish and rainbow trout. Both midkine proteins are clearly different from the related pleiotrophin, which was also identified in zebrafish and other fishes.
View Article and Find Full Text PDFThe microphthalmia-associated transcription factor (MITF) exists in at least four isoforms. These are generated in higher vertebrates using alternative 5' exons and promoters from a single gene. Two separate genes (mitf-m and mitf-b), however, are present in different teleost fish species including the poeciliid Xiphophorus, the pufferfishes Fugu rubripes and Tetraodon nigroviridis, and the zebrafish Danio rerio.
View Article and Find Full Text PDF