Publications by authors named "Juthathip Mongkolsapaya"

Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However, viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we use a new mechanistic model of bivalent binding to study  >45 patient-isolated IgG1 antibodies interacting with SARS-CoV-2 RBD surfaces.

View Article and Find Full Text PDF

Cellular processes are controlled by the thermodynamics of the underlying biomolecular interactions. Frequently, structural investigations use one monomeric binding partner, while ensemble measurements of binding affinities generally yield one affinity representative of a 1:1 interaction, despite the majority of the proteome consisting of oligomeric proteins. For example, viral entry and inhibition in SARS-CoV-2 involve a trimeric spike surface protein, a dimeric angiotensin-converting enzyme 2 (ACE2) cell-surface receptor and dimeric antibodies.

View Article and Find Full Text PDF

Objectives: We studied the immunogenicity after primary and booster vaccinations of the Abdala COVID-19 vaccine, a receptor-binding domain protein subunit vaccine, in Vietnamese people by determining the level of neutralization and cross-neutralization activities against the ancestral SARS-CoV-2 and its variants and SARS-CoV-1.

Methods: We performed a prospective observational study, enrolling adults aged 19-59 years in Dong Thap province, southern Vietnam, and collected blood samples from baseline until 4 weeks after the booster dose. We measured anti-nucleocapsid, anti-spike, and neutralizing antibodies against SARS-CoV-2 and assessed the cross-neutralization against 14 SARS-CoV-2 variants and SARS-CoV-1.

View Article and Find Full Text PDF

A strong and effective COVID-19 and future pandemic responses rely on global efforts to carry out surveillance of infections and emerging SARS-CoV-2 variants and to act accordingly in real time. Many countries in Southeast Asia lack capacity to determine the potential threat of new variants, or other emerging infections. Funded by Wellcome, the Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium aims to develop and apply a multidisciplinary research platform in Southeast Asia (SEA) for rapid assessment of the biological significance of SARS-CoV-2 variants, thereby informing coordinated local, regional and global responses to the COVID-19 pandemic.

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses AZD3152, a monoclonal antibody created to neutralize SARS-CoV-2 and enhance effectiveness against new variants that can resist other treatments.
  • AZD3152 targets a specific part of the virus's spike protein, blocking its ability to bind to human cells and effectively neutralizes various variants, including Omicron, but struggles against certain XBB subvariants.
  • In animal trials, AZD3152 helped protect hamsters from severe symptoms and lung issues, and initial human trials suggest it is safe and may offer long-lasting protection against certain strains of COVID-19.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on monitoring the evolution of SARS-CoV-2 variants to assess their ability to evade immune responses, emphasizing the importance of different neutralization assays and various serum samples.
  • - Comparisons were made among datasets using human, hamster, and mouse serum, revealing that animal models, especially hamsters, generally yielded higher neutralization titers than human samples, while showing consistent patterns across assays.
  • - The findings suggest a shift in SARS-CoV-2 surveillance strategies from relying solely on human serum from first infections to incorporating serum from animal models, particularly hamsters, for more reliable results.
View Article and Find Full Text PDF

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites.

View Article and Find Full Text PDF

Natural killer cells (NK cells) are the front line of immune cells to combat pathogens and able to influence the subsequent adaptive immune responses. One of the factors contributing to pathogenesis in dengue hemorrhagic fever (DHF) disease is aberrant immune activation during early phase of infection. This study explored the profile of NK cells in dengue infected pediatric patients with different degrees of disease severity.

View Article and Find Full Text PDF

The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.

View Article and Find Full Text PDF

Under pressure from neutralising antibodies induced by vaccination or infection the SARS-CoV-2 spike gene has become a hotspot for evolutionary change, leading to the failure of all mAbs developed for clinical use. Most potent antibodies bind to the receptor binding domain which has become heavily mutated. Here we study responses to a conserved epitope in sub-domain-1 (SD1) of spike which have become more prominent because of mutational escape from antibodies directed to the receptor binding domain.

View Article and Find Full Text PDF

Background: Several countries have authorized a booster vaccine campaign to combat the spread of COVID-19. Data on persistence of booster vaccine-induced immunity against new Omicron subvariants are still limited. Therefore, our study aimed to determine the serological immune response of COVID-19 booster after CoronaVac-priming.

View Article and Find Full Text PDF

Currently licensed dengue vaccines do not induce long-term protection in children without previous exposure to dengue viruses in nature. These vaccines are based on selected attenuated strains of the four dengue serotypes and employed in combination for two or three consecutive doses. In our search for a better dengue vaccine candidate, live attenuated strains were followed by non-infectious virus-like particles or the plasmids that generate these particles upon injection into the body.

View Article and Find Full Text PDF

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays.

View Article and Find Full Text PDF

Pronounced immune escape by the SARS-CoV-2 Omicron variant has resulted in many individuals possessing hybrid immunity, generated through a combination of vaccination and infection. Concerns have been raised that omicron breakthrough infections in triple-vaccinated individuals result in poor induction of omicron-specific immunity, and that prior SARS-CoV-2 infection is associated with immune dampening. Taking a broad and comprehensive approach, we characterize mucosal and blood immunity to spike and non-spike antigens following BA.

View Article and Find Full Text PDF

The 2',5'- oligoadenylate synthetase (OAS) - ribonuclease L (RNAseL) - phosphodiesterase 12 (PDE12) pathway is an essential interferon-induced effector mechanism against RNA virus infection. Inhibition of PDE12 leads to selective amplification of RNAseL activity in infected cells. We aimed to investigate PDE12 as a potential pan-RNA virus antiviral drug target and develop PDE12 inhibitors that elicit antiviral activity against a range of viruses.

View Article and Find Full Text PDF

Humans infected with dengue virus (DENV) acquire long-term protection against the infecting serotype, whereas cross-protection against other serotypes is short-lived. Long-term protection induced by low levels of type-specific neutralizing antibodies can be assessed using the virus-neutralizing antibody test. However, this test is laborious and time-consuming.

View Article and Find Full Text PDF

COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g.

View Article and Find Full Text PDF

Most existing studies characterizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses are peptide based. This does not allow evaluation of whether tested peptides are processed and presented canonically. In this study, we use recombinant vaccinia virus (rVACV)-mediated expression of SARS-CoV-2 spike protein and SARS-CoV-2 infection of angiotensin-converting enzyme (ACE)-2-transduced B cell lines to evaluate overall T cell responses in a small cohort of recovered COVID-19 patients and uninfected donors vaccinated with ChAdOx1 nCoV-19.

View Article and Find Full Text PDF

In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the immune responses in UK healthcare workers after vaccination with BNT162b2 or AZD1222, focusing on the effects of prior SARS-CoV-2 infection on these responses.
  • Over 6-9 months, researchers found that while antibody levels declined, T and memory B cell responses remained stable; booster doses effectively increased antibody levels and enhanced immunity against variants.
  • Prior infection significantly enhanced T cell responses, which persisted for at least six months after vaccination, indicating that "hybrid" immunity (from both infection and vaccination) may lead to better protection against severe illness.
View Article and Find Full Text PDF

Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period).

View Article and Find Full Text PDF

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.

View Article and Find Full Text PDF