J Microbiol Biotechnol
August 2024
, the primary mold that causes food spoilage, poses significant health and economic problems worldwide. Eliminating growth is essential to ensure the safety of agricultural products, and extracellular compounds (ECCs) produced by spp. have been demonstrated to inhibit the growth of this pathogen.
View Article and Find Full Text PDFIn tropical regions, the viability of outdoor photo-fermentative biohydrogen production faces challenges arising from elevated temperatures and varying light intensity. This research aimed to explore how high temperatures and outdoor environments impact both biohydrogen production and the growth of purple non-sulfur bacteria. Our findings revealed the potential of Rhodopseudomonas spp.
View Article and Find Full Text PDFProtease is a widely used enzyme particularly in the detergent industry. In this research, we aimed to isolate alkaline protease-producing bacteria for characterization as a laundry detergent additive. The screening of alkaline protease production was investigated on basal medium agar plus 1% skim milk at pH 11, with incubation at 30°C.
View Article and Find Full Text PDFThis research aimed to evaluate the diversity of yeasts recovered from fermented foods gathered from some areas of Northeastern Thailand. The fermented food items included Pla-som, Nham-pla, Kem-buknud, Isan-sausage, Pla-ra, Mhum-neu, Mhum-Khai-pla, Nham-neu, Nham-mu, Kung-joom, Som-pla-noi, and Poo-dong. Their probiotic characteristics were also investigated.
View Article and Find Full Text PDFis a yeast strain often used to improve the feed quality of ruminants. However, has limited capacity to provide biomass when inoculated with carbon sources and a low ability to produce cellulase enzymes. Here, we hypothesized that yeast in the rumen produces a large amount of biomass and could release cellulase enzymes to break down fiber content.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
August 2013
A new yeast species (KKU-FW10) belonging to the Candida genus was isolated from Jasminum adenophyllum in the Plant Genetic Conservation Project under The Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn area, Chulabhorn Dam, Konsan district within Chaiyaphum province in Thailand. The strain was identified via analysis of nucleotide sequences from the D1/D2 domain of 26S ribosomal DNA and based on its morphological, physiological and biochemical characteristics. The sequence obtained from yeast isolate KKU-FW10 was 97 percent identical to that of Candida chanthaburiensis (GenBank accession number AB500861.
View Article and Find Full Text PDF