Publications by authors named "Justyne Ross"

Background: As knowledge of the human genome has advanced, so too has the recognition that interpretation of the pathogenic nature of sequence variants can be challenging. The von Willebrand factor (VWF) gene exhibits a significant degree of sequence variability, and the first VWF variant associated with type 1 von Willebrand disease (VWD), c.4751 A>G, p.

View Article and Find Full Text PDF

Background: Inherited bleeding, thrombotic, and platelet disorders (BTPDs) are a heterogeneous set of diseases, many of which are very rare globally. Over the past 5 decades, the genetic basis of some of these disorders has been identified, and recently, high-throughput sequencing has become the primary means of identifying disease-causing genetic variants.

Objectives: Knowledge of the clinical validity of a gene-disease relationship is essential to provide an accurate diagnosis based on results of diagnostic gene panel tests and inform the construction of such panels.

View Article and Find Full Text PDF

: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS.

View Article and Find Full Text PDF

Accurate and consistent sequence variant interpretation is critical to the correct diagnosis and appropriate clinical management and counseling of patients with inherited genetic disorders. To minimize discrepancies in variant curation and classification among different clinical laboratories, the American College of Medical Genetics and Genomics (ACMG), along with the Association for Molecular Pathology (AMP), published standards and guidelines for the interpretation of sequence variants in 2015. Because the rules are not universally applicable to different genes or disorders, the Clinical Genome Resource (ClinGen) Platelet Disorder Expert Panel (PD-EP) has been tasked to make ACMG/AMP rule specifications for inherited platelet disorders.

View Article and Find Full Text PDF

Glanzmann thrombasthenia (GT) is an autosomal recessive disorder of platelet aggregation caused by quantitative or qualitative defects in integrins αIIb and β3. These integrins are encoded by the and genes and form platelet glycoprotein (GP)IIb/IIIa, which acts as the principal platelet receptor for fibrinogen. Although there is variability in the clinical phenotype, most patients present with severe mucocutaneous bleeding at an early age.

View Article and Find Full Text PDF

Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies.

View Article and Find Full Text PDF

Newborn screening is an incredibly useful tool for the early identification of many metabolic disorders, including fatty acid oxidation (FAO) disorders. In many cases, molecular tests are necessary to reach a final diagnosis, highlighting the need for a thorough evaluation of genes implicated in FAO disorders. Using the ClinGen (Clinical Genome Resource) clinical validity framework, thirty genes were analyzed for the strength of evidence supporting their association with FAO disorders.

View Article and Find Full Text PDF

Background: Chromatin containing the histone variant CENP-A (CEN chromatin) exists as an essential domain at every centromere and heritably marks the location of kinetochore assembly. The size of the CEN chromatin domain on alpha satellite DNA in humans has been shown to vary according to underlying array size. However, the average amount of CENP-A reported at human centromeres is largely consistent, implying the genomic extent of CENP-A chromatin domains more likely reflects variations in the number of CENP-A subdomains and/or the density of CENP-A nucleosomes within individual subdomains.

View Article and Find Full Text PDF