Crystallography-based fragment screening is a highly effective technique employed in structure-based drug discovery to expand the range of lead development opportunities. It allows screening and sorting of weakly binding, low molecular mass fragments, which can be developed into larger high-affinity lead compounds. Technical improvements at synchrotron beamlines, design of innovative libraries mapping chemical space efficiently, effective soaking methods and enhanced data analysis have enabled the implementation of high-throughput fragment screening pipelines at multiple synchrotron facilities.
View Article and Find Full Text PDFRecent advances in automation have fostered the development of unattended data collection services at a handful of synchrotron facilities worldwide. At the Swiss Light Source, the installation of new high-throughput sample changers at all three macromolecular crystallography beamlines and the commissioning of the Fast Fragment and Compound Screening pipeline created a unique opportunity to automate data acquisition. Here, the DA+ microservice software stack upgrades, implementation of an automatic loop-centering service and deployment of the Smart Digital User (SDU) software for unattended data collection are reported.
View Article and Find Full Text PDFThe JUNGFRAU 4-megapixel (4M) charge-integrating pixel-array detector, when operated at a full 2 kHz frame rate, streams data at a rate of 17 GB s. To operate this detector for macromolecular crystallography beamlines, a data-acquisition system called Jungfraujoch was developed. The system, running on a single server with field-programmable gate arrays and general-purpose graphics processing units, is capable of handling data produced by the JUNGFRAU 4M detector, including conversion of raw pixel readout to photon counts, compression and on-the-fly spot finding.
View Article and Find Full Text PDFThe HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24-27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity.
View Article and Find Full Text PDFContinuous developments in cryogenic X-ray crystallography have provided most of our knowledge of 3D protein structures, which has recently been further augmented by revolutionary advances in cryoEM. However, a single structural conformation identified at cryogenic temperatures may introduce a fictitious structure as a result of cryogenic cooling artefacts, limiting the overview of inherent protein physiological dynamics, which play a critical role in the biological functions of proteins. Here, a room-temperature X-ray crystallographic method using temperature as a trigger to record movie-like structural snapshots has been developed.
View Article and Find Full Text PDFThe foot-and-mouth disease virus (FMDV) 2C protein shares conserved motifs with enterovirus 2Cs despite low sequence identity. Here, we determine the crystal structure of an FMDV 2C fragment to 1.83 Å resolution, which comprises an ATPase domain, a region equivalent to the enterovirus 2C zinc-finger (ZFER), and a C-terminal domain harboring a loop (PBL) that occupies a hydrophobic cleft (Pocket) in an adjacent 2C molecule.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
March 2022
Over the last two decades, fragment-based drug discovery (FBDD) has emerged as an effective and efficient method to identify new chemical scaffolds for the development of lead compounds. X-ray crystallography can be used in FBDD as a tool to validate and develop fragments identified as binders by other methods. However, it is also often used with great success as a primary screening technique.
View Article and Find Full Text PDFThe pandemic of coronavirus disease 2019 (COVID-19) is changing the world like never before. This crisis is unlikely contained in the absence of effective therapeutics or vaccine. The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays essential roles in virus replication and immune evasion, presenting a charming drug target.
View Article and Find Full Text PDFAlongshan virus (ALSV) is an emerging human pathogen that was identified in China and rapidly spread to the European continent in 2019, raising concerns about public health. ALSV belongs to the distinct group within the family with segmented RNA genomes. While segments 2 and 4 of the ALSV genome encode the VP1-VP3 proteins of unknown origin, segments 1 and 3 encode the NS2b-NS3 and NS5 proteins, which are related to nonstructural proteins, suggesting an evolutionary link between segmented and unsegmented viruses within the family.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) encodes an exceptionally large number of toxin-antitoxin (TA) systems, supporting the hypothesis that TA systems are involved in pathogenesis. We characterized the putative Mtb Rv1044-Rv1045 TA locus structurally and functionally, demonstrating that it constitutes a bona fide TA system but adopts a previously unobserved antitoxicity mechanism involving phosphorylation of the toxin. While Rv1045 encodes the guanylyltransferase TglT functioning as a toxin, Rv1044 encodes the novel atypical serine protein kinase TakA, which specifically phosphorylates the cognate toxin at residue S78, thereby neutralizing its toxicity.
View Article and Find Full Text PDFWe report a crystallographic analysis of small-molecule ligands of the human YTHDC1 domain that recognizes N6-methylated adenine (mA) in RNA. The 30 binders are fragments (molecular weight < 300 g mol) that represent 10 different chemotypes identified by virtual screening. Despite the structural disorder of the binding site loop (residues 429-439), most of the 30 fragments emulate the two main interactions of the -NHCH group of mA.
View Article and Find Full Text PDFNative single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers ( < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2019
Nectin-like (Necl) molecules are Ca-independent Ig-like transmembrane cell adhesion molecules that participate in junctions between different cell types. The specific cell-cell adhesions mediated by Necl proteins are important in neural development and have been implicated in neurodegenerative diseases. Here, we present the crystal structure of the mouse Necl-4 full ectodomain and the structure of the heterophilic Necl ectodomain complex formed by the mNecl-4 and mNecl-1 ectodomains.
View Article and Find Full Text PDFAt the Swiss Light Source macromolecular crystallography (MX) beamlines the collection of serial synchrotron crystallography (SSX) diffraction data is facilitated by the recent DA+ data acquisition and analysis software developments. The SSX suite allows easy, efficient and high-throughput measurements on a large number of crystals. The fast continuous diffraction-based two-dimensional grid scan method allows initial location of microcrystals.
View Article and Find Full Text PDFGram-negative bacteria utilize the type III secretion system (T3SS) to inject effector proteins into the host cell cytoplasm, where they subvert cellular functions and assist pathogen invasion. The conserved type III-associated ATPase is critical for the separation of chaperones from effector proteins, the unfolding of effector proteins and translocating them through the narrow channel of the secretion apparatus. However, how ATP hydrolysis is coupled to the mechanical work of the enzyme remains elusive.
View Article and Find Full Text PDF(MTB) caused 10.4 million cases of tuberculosis and 1.7 million deaths in 2016.
View Article and Find Full Text PDFData acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV) remains a threat to public health worldwide; however, effective vaccine or drug against CoVs remains unavailable. CoV helicase is one of the three evolutionary most conserved proteins in nidoviruses, thus making it an important target for drug development. We report here the first structure of full-length coronavirus helicase, MERS-CoV nsp13.
View Article and Find Full Text PDFHuman coronavirus (CoV) HKU1 is a pathogen causing acute respiratory illnesses and so far little is known about its biology. HKU1 virus uses its S1 subunit C-terminal domain (CTD) and not the N-terminal domain like other lineage A β-CoVs to bind to its yet unknown human receptor. Here we present the crystal structure of HKU1 CTD at 1.
View Article and Find Full Text PDFEnterovirus 71 (EV71) is the major pathogen responsible for outbreaks of hand, foot, and mouth disease. EV71 nonstructural protein 2C participates in many critical events throughout the virus life cycle; however, its precise role is not fully understood. Lack of a high-resolution structure made it difficult to elucidate 2C activity and prevented inhibitor development.
View Article and Find Full Text PDFProtein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species.
View Article and Find Full Text PDFA fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported.
View Article and Find Full Text PDFTolR is a 15-kDa inner membrane protein subunit of the Tol-Pal complex in Gram-negative bacteria, and its function is poorly understood. Tol-Pal is recruited to cell division sites where it is involved in maintaining the integrity of the outer membrane. TolR is related to MotB, the peptidoglycan (PG)-binding stator protein from the flagellum, suggesting it might serve a similar role in Tol-Pal.
View Article and Find Full Text PDFHow ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions.
View Article and Find Full Text PDFReplication and transcription of influenza virus genome mainly depend on its RNA-dependent RNA polymerase (RdRP), composed of the PA, PB1, and PB2 subunits. Although extensively studied, the underlying mechanism of the RdRP complex is still unclear. Here we report the biochemical characterization of influenza RdRP subcomplex comprising PA, PB1, and N terminus of PB2, which exist as dimer in solution and can assemble into a tetramer state, regulated by vRNA promoter.
View Article and Find Full Text PDF