The pivotal role of / transcriptional factors in crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals.
View Article and Find Full Text PDFExome sequencing-based allele mining for frost tolerance suggests HvCBF14 rather than CNV at Fr-H2 locus is the main responsible of frost tolerance in barley. Wild relatives, landraces and old cultivars of barley represent a reservoir of untapped and potentially important genes for crop improvement, and the recent sequencing technologies provide the opportunity to mine the existing genetic diversity and to identify new genes/alleles for the traits of interest. In the present study, we use frost tolerance and vernalization requirement as case studies to demonstrate the power of allele mining carried out on exome sequencing data generated from > 400 barley accessions.
View Article and Find Full Text PDFPlant secondary metabolic pathways are finely regulated by the activity of transcription factors, among which members of the bHLH and MYB subfamilies play a main role. L. is a unique officinal plant species with over 600 synthesized phytochemicals having diverse scale-up industrial and pharmaceutical usage.
View Article and Find Full Text PDFCadmium (Cd) and lead (Pb) are two toxic heavy metals (HMs) whose presence in soil is generally low. However, industrial and agricultural activities in recent years have significantly raised their levels, causing progressive accumulations in plant edible tissues, and stimulating research in this field. Studies on toxic metals are commonly focused on a single metal, but toxic metals occur simultaneously.
View Article and Find Full Text PDFSeveral environmental factors, such as drought, salinity, and extreme temperatures, negatively affect plant growth and development, which leads to yield losses. The tolerance or sensitivity to abiotic stressors are the expression of a complex machinery involving molecular, biochemical, and physiological mechanisms. Here, a meta-analysis on previously published RNA-Seq data was performed to identify the genes conferring tolerance to chilling, osmotic, and salt stresses, by comparing the transcriptomic changes between tolerant and susceptible rice genotypes.
View Article and Find Full Text PDFBreeding for resistance is the most effective tool for controlling the corky root disease of tomato caused by Pyrenochaeta lycopersici. A comparative RNA-Seq-based transcriptomic analysis was conducted at 96 hpi (hours post infection) on two tomato cultivars: resistant Mogeor and its genetic background, and susceptible Moneymaker to investigate the differences in their transcriptomic response and identify the molecular bases of this plant-pathogen interaction. The number of differentially expressed genes (DEGs) identified was much higher in the susceptible than in the resistant genotype; however, the proportion of upregulated genes was higher in Mogeor (70.
View Article and Find Full Text PDFLow temperature is a major factor limiting rice growth and yield, and seedling is one of the developmental stages at which sensitivity to chilling stress is higher. Tolerance to chilling is a complex quantitative trait, so one of the most effective approaches to identify genes and pathways involved is to compare the stress-induced expression changes between tolerant and sensitive genotypes. Phenotypic responses to chilling of 13 Japonica cultivars were evaluated, and Thaibonnet and Volano were selected as sensitive and tolerant genotypes, respectively.
View Article and Find Full Text PDFA family of CBF transcription factors plays a major role in reconfiguring the plant transcriptome in response to low-freezing temperature in temperate cereals. In barley, more than 13 HvCBF genes map coincident with the major QTL FR-H2 suggesting them as candidates to explain the function of the locus. Variation in copy number (CNV) of specific HvCBFs was assayed in a panel of 41 barley genotypes using RT-qPCR.
View Article and Find Full Text PDFThe CEREALAB database aims to store genotypic and phenotypic data obtained by the CEREALAB project and to integrate them with already existing data sources in order to create a tool for plant breeders and geneticists. The database can help them in unravelling the genetics of economically important phenotypic traits; in identifying and choosing molecular markers associated to key traits; and in choosing the desired parentals for breeding programs. The database is divided into three sub-schemas corresponding to the species of interest: wheat, barley and rice; each sub-schema is then divided into two sub-ontologies, regarding genotypic and phenotypic data, respectively.
View Article and Find Full Text PDF