Due to the numerous dangers arising from excessive use of antibiotics in treatments, researchers have been searching for natural alternatives to conventional antibiotics. Despite the popularity of plant extracts, essential oils, and their derivatives in herbal medicine, their applications in novel therapies are rather limited. This paper tries to open a new possibility for infection treatments by assessing the suitability of antimicrobial hydrogels as bioinks.
View Article and Find Full Text PDFDespite a wide range of available wound treatments, hard-to-heal wounds still pose a challenge. Hydrogels are often used as dressings for these wounds, because they sustain moisture in the wound environment, supporting the natural healing process. However, it is still not fully understood how physicochemical properties of hydrogel matrix affect the drug release process.
View Article and Find Full Text PDFPolysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness.
View Article and Find Full Text PDFCancerous tumors are among the most fatal diseases worldwide, claiming nearly 10 million lives in 2020. Due to their complex and dynamic nature, modeling tumors accurately is a challenging task. Current models suffer from inadequate translation between in vitro and in vivo results, primarily due to the isotropic nature of tumors and their microenvironment's relationship.
View Article and Find Full Text PDFSeptoplasty is a widely used method in treating deviated septum. Although it is successfully implemented, there are problems with excessive bleeding, septal perforation, or infections. The use of anatomically shaped implants could help overcome these problems.
View Article and Find Full Text PDFThree porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.
View Article and Find Full Text PDFPurpose: Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria.
Materials And Methods: Six Composite Porous Matrices (CPMs) based on polyurethane (PUR) in alliance with polylactide (PLAs) and poly(vinyl alcohol) (PVA) were prepared and analyzed using optical microscopy.
This paper addresses the potential application of flexible thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) compositions as a material for the production of antibacterial wound dressings using the Fused Filament Fabrication (FFF) 3D printing method. On the market, there are medical-grade polyurethane filaments available, but few of them have properties required for the fabrication of wound dressings, such as flexibility and antibacterial effects. Thus, research aimed at the production, characterization and modification of filaments based on different TPU/PLA compositions was conducted.
View Article and Find Full Text PDFThe aim of our research was to investigate the effect of a small nanocellulose (NC) addition on an improvement of the mechanical properties of epoxy composites. A procedure of chemical extraction from pressed lignin was used to obtain nanocellulose fibers. The presence of nanoparticles in the cellulose pulp was confirmed by FTIR/ATR spectra as well as measurement of nanocellulose particle size using a Zetasizer analyzer.
View Article and Find Full Text PDFThe aim of this study was to fabricate novel microparticles (MPs) for efficient and long-term delivery of amikacin (AMI). The emulsification method proposed for encapsulating AMI employed low-molecular-weight poly(lactic acid) (PLA) and poly(lactic acid--polyethylene glycol) (PLA-PEG), both supplemented with poly(vinyl alcohol) (PVA). The diameters of the particles obtained were determined as less than 30 μm.
View Article and Find Full Text PDFThis paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially designed elastic porous structures as candidates in cancellous tissue engineering. Additionally, we examined whether 3D printing affects the structure and thermal stability of the filament.
View Article and Find Full Text PDFThe skeleton is a crucial element of the motion system in the human body, whose main function is to support and protect the soft tissues. Furthermore, the elements of the skeleton act as a storage place for minerals and participate in the production of red blood cells. The bone tissue includes the craniomaxillofacial bones, ribs, and spine.
View Article and Find Full Text PDFThe aim of the performed study was to fabricate an antibacterial and degradable scaffold that may be used in the field of skin regeneration. To reach the degradation criterion for the biocompatible polyurethane (PUR), obtained by using amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), was used and processed with so-called "fast-degradable" polymer polylactide (PLA) (5 or 10 wt %). To meet the antibacterial requirement obtained, hybrid PUR-PLA scaffolds (HPPS) were modified with ciprofloxacin (Cipro) (2 or 5 wt %) and the fluoroquinolone antibiotic inhibiting growth of bacteria, such as , , and , which are the main causes of wound infections.
View Article and Find Full Text PDFThe possibility of using additive manufacturing (AM) in the medicine area has created new opportunities in health care. This has contributed to a sharp increase in demand for 3D printers, their systems and materials that are adapted to strict medical requirements. We described herein a medical-grade thermoplastic polyurethane (S-TPU) which was developed and then formed into a filament for Fused Deposition Modeling (FDM) 3D printers during a melt-extrusion process.
View Article and Find Full Text PDFThe widespread use of three-dimensional (3D) printing technologies in medicine has contributed to the increased demand for 3D printing materials. In addition, new printing materials that are appearing in the industry do not provide a detailed material characterization. In this paper, we present the synthesis and characterization of polycaprolactone (PCL) based medical-grade thermoplastic polyurethanes, which are suitable for forming in a filament that is dedicated to Fused Deposition Modeling 3D (FDM 3D)printers.
View Article and Find Full Text PDFNovel, slowly-degradable and hydrophilic materials with proper mechanical properties and surface characteristics are in great demand within the biomedical field. In this paper, the design, synthesis, and characterization of polyurethanes (PUR) crosslinked with poly(vinyl alcohol) (PVA) as a new proposition for regenerative medicine is described. PVA-crosslinked PURs were synthesized by a two-step polymerization performed in a solvent (dimethylsulfoxide, DMSO).
View Article and Find Full Text PDFIn this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as a modifier used to stimulate bone tissue regeneration. The obtained unmodified (PURs) and modified with GPCa (PURs-M) PEEURs were studied by various techniques.
View Article and Find Full Text PDFThe literature describes that the most efficient cell penetration takes place at 200⁻500 µm depth of the scaffold. Many different scaffold fabrication techniques were described to reach these guidelines. One such technique is solvent casting particulate leaching (SC/PL).
View Article and Find Full Text PDFRecently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone.
View Article and Find Full Text PDFThe dynamic increase in the manufacture of rubber products, particularly those used in the automobile industry, is responsible for a vast amount of wastes, mostly in the form of used tyres, of which more than 17 million tonnes are produced globally each year. The widely differing chemical compositions and the cross-linked structures of rubber in tyres are the prime reason why they are highly resistant to biodegradation, photochemical decomposition, chemical reagents and high temperatures. The increasing numbers of used tyres therefore constitute a serious threat to the natural environment.
View Article and Find Full Text PDF