Publications by authors named "Justyna Kowal"

Article Synopsis
  • Osteoporosis is a disease that makes bones weaker as people get older, increasing the risk of fractures.
  • Scientists found two plant-based antioxidants, Apigenin and Rutaecarpine, that help bone stem cells grow into bone cells better.
  • These antioxidants could help maintain healthy bones as we age and might be a way to prevent osteoporosis.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists discovered a substance called KIAA1199 that affects how stem cells in the bone help the bone to grow and heal.
  • High levels of KIAA1199 in the blood can mean a higher chance of breaking bones, especially in older people with weak bones.
  • Removing KIAA1199 from stem cells made them better at forming new bone, leading to stronger bones and faster healing in experiments with mice.
View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) gain an increasing focus in the field of regenerative medicine due to their differentiation abilities into chondrocytes, adipocytes, and osteoblastic cells. However, it is apparent that the transformation processes are extremely complex and cause cellular heterogeneity. The study aimed to characterize differences between MSCs and cells after adipogenic (AD) or osteoblastic (OB) differentiation at the proteome level.

View Article and Find Full Text PDF

The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high-fat diet and insulinopenia induced by treatment with streptozotocin, we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by -28.

View Article and Find Full Text PDF

Background: Transplantation of human bone marrow stromal cells (hBMSCs) is a promising therapy for bone regeneration due to their ability to differentiate into bone forming osteoblastic cells. However, transplanted hBMSCs exhibit variable capacity for bone formation resulting in inconsistent clinical outcome. The aim of the study was to identify a set of donor- and cell-related characteristics that detect hBMSCs with optimal osteoblastic differentiation capacity.

View Article and Find Full Text PDF

Intra-articular fractures are a major cause of post-traumatic osteoarthritis (PTOA). Despite adequate surgical treatment, the long-term risk for PTOA is high. Previous studies reported that joint injuries initiate an inflammatory cascade characterized by an elevation of synovial pro-inflammatory cytokines, which can lead to cartilage degradation and PTOA development.

View Article and Find Full Text PDF

The development and field validation of newly designed nanostructured gold-plated gel-integrated microelectrode (Au-GIME) arrays applied to the direct square wave anodic stripping voltammetry (SWASV) quantification of the potentially bioavailable inorganic mercury (Hg(II)) species in the coastal area are presented. The Au-GIME consists of arrays of 100-500 interconnected iridium (Ir)-based microdisks that are electroplated with renewable Au nanoparticles (AuNPs) or Au nanofilaments (AuNFs) and covered with an agarose gel. The gel protects the sensor surface from fouling and ensures that mass transport of analytes toward the sensor surface is by pure diffusion only and therefore independent of the ill-controlled convective conditions of the media.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) is a unique adipose depot originating from bone marrow stromal stem cells (BMSCs) and regulates bone homeostasis and energy metabolism. An increased BMAT volume is observed in several conditions e.g.

View Article and Find Full Text PDF

Cultured human bone marrow stromal (mesenchymal) stem cells (hBM-MSCs) are heterogenous cell populations exhibiting variable biological properties. Quantitative high-content imaging technology allows identification of morphological markers at a single cell resolution that are determinant for cellular functions. We determined the morphological characteristics of cultured primary hBM-MSCs and examined their predictive value for hBM-MSC functionality.

View Article and Find Full Text PDF

This conference report describes the training activities that took place in the frame of the Integrated in Situ Chemical MApping probe (SCHeMA) summer school organized from the 14th to the 16th of June 2016 in Bilbao (Spain).

View Article and Find Full Text PDF

Functional surfaces were generated by a combination of enzymes with polymer membranes composed of an amphiphilic, asymmetric block copolymer poly(ethyleneglycol)- block-poly(γ-methyl-ε-caprolactone)- block-poly[(2-dimethylamino)ethylmethacrylate]. First, polymer films formed at the air-water interface were transferred in different sequences onto silica solid support using the Langmuir-Blodgett technique, generating homogeneous monolayers and bilayers. A detailed characterization of these films provided insight into their properties (film thickness, wettability, topography, and roughness).

View Article and Find Full Text PDF

Known problems of the autologous chondrocyte implantation motivate the search for cellular alternatives. The aim of the study was to test the potential of synovium-derived stem cells (SMSC) to regenerate cartilage using a matrix-associated implantation. In an osteochondral defect model of the medial femoral condyle in a rabbit, a collagen membrane was seeded with either culture-expanded allogenic chondrocytes or SMSC and then transplanted into the lesion.

View Article and Find Full Text PDF

Background: In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic signalling are other important regulators of similar secretory mechanisms in pancreas.

View Article and Find Full Text PDF

Hybrids composed of amphiphilic block copolymers and lipids constitute a new generation of biological membrane-inspired materials. Hybrid membranes resulting from self-assembly of lipids and polymers represent adjustable models for interactions between artificial and natural membranes, which are of key importance, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are focusing on making surfaces that can interact well with their surroundings, like in medicine and the environment.
  • They created "active surfaces" using special blocky materials that can hold enzymes, which are proteins that help speed up reactions.
  • By testing these materials, they found they could stick enzymes firmly to the surfaces while keeping them working, which could be useful for various applications.
View Article and Find Full Text PDF

Infections associated with bacterial adhesion and subsequent biofilm formation constitute a grave medical issue for which conventional antibiotic therapies remain ineffective. Here, we introduce a new strategy employing nanotechnology to create smart surfaces with self-defending properties that result in controlled drug production and controlled release for long periods of time. Self-defending surfaces on solid supports are prepared by immobilizing polymer nanoreactors containing an encapsulated biocatalyst that can convert non-antibiotic substrates to an abiotic drug.

View Article and Find Full Text PDF

Planar solid-supported membranes based on amphiphilic block copolymers represent promising systems for the artificial creation of structural surfaces. Here we introduce a method for engineering functional planar solid-supported membranes through insertion of active biomolecules. We show that membranes based on poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) amphiphilic diblock copolymers, which mimic natural membranes, are suitable for hosting biomolecules.

View Article and Find Full Text PDF

tRNA precursors, which are transcribed by RNA polymerase III, undergo end-maturation, splicing, and base modifications. Hypomodified tRNAs, such as tRNA(Val(AAC)), lacking 7-methylguanosine and 5-methylcytidine modifications, are subject to degradation by a rapid tRNA decay pathway. Here we searched for genes which, when overexpressed, restored stability of tRNA(Val(AAC)) molecules in a modification-deficient trm4Δtrm8Δ mutant.

View Article and Find Full Text PDF