Background/aim: SN-38, an active metabolite of irinotecan, exhibits toxicity to all proliferating cells, causing dose-limiting and potentially life-threatening side effects. Newly established water-soluble derivatives of SN-38, 7-ethyl-9-(N-morpholinyl)methyl-10-hydroxycamptothecin (BN-MOA) and 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (BN-NMe), exhibit a unique mechanism of spontaneous alkylation of aromatic bases in DNA and show greater in vitro activity on cancer cell lines than SN-38. The aim of this study was to compare the therapeutic responses to irinotecan, BN-MOA and BN-NMe in vivo and in vitro in 3D cultures using colorectal cancer (CRC) patient derived xenografts (PDX).
View Article and Find Full Text PDFAlthough heavily studied, the subject of anti-PD-L1 small-molecule inhibitors is still elusive. Here we present a systematic overview of the principles behind successful anti-PD-L1 small-molecule inhibitor design on the example of the -terphenyl scaffold, with a particular focus on the neglected influence of the solubilizer tag on the overall affinity toward PD-L1. The inhibitor developed according to the proposed guidelines was characterized through its potency in blocking PD-1/PD-L1 complex formation in homogeneous time-resolved fluorescence and cell-based assays.
View Article and Find Full Text PDFRecent advances in immuno-oncology have opened up new and impressive treatment options for cancer. Notwithstanding, overcoming the limitations of the current FDA-approved therapies with monoclonal antibodies (mAbs) that block the PD-1/PD-L1 pathway continues to lead to the testing of multiple approaches and optimizations. Recently, a series of macrocyclic peptides have been developed that exhibit binding strengths to PD-L1 ranging from sub-micromolar to micromolar.
View Article and Find Full Text PDFJ Med Chem
July 2023
In search of a potent small molecular PD-L1 inhibitor, we designed and synthesized a compound based on a 2-hydroxy-4-phenylthiophene-3-carbonitrile moiety. Ligand's performance was tested in vitro and compared side-by-side with a known PD-L1 antagonist with a proven bioactivity BMS1166. Subsequently, we modified both compounds to allow F labeling that could be used for PET imaging.
View Article and Find Full Text PDFNew biphenyl-based chimeric compounds containing pomalidomide were developed and evaluated for their activity to inhibit and degrade the programmed cell death-1/programmed cell death- ligand 1 (PD-1/PD-L1) complex. Most of the compounds displayed excellent inhibitory activity against PD-1/PD-L1, as assessed by the homogenous time-resolved fluorescence (HTRF) binding assay. Among them, compound is one of the best with an IC value of 60 nM.
View Article and Find Full Text PDFTargeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) interaction has become an established strategy for cancer immunotherapy. Although hundreds of small-molecule, peptide, and peptidomimetic inhibitors have been proposed in recent years, only a limited number of drug candidates show good PD-1/PD-L1 blocking activity in cell-based assays. In this article, we compare representative molecules from different classes in terms of their PD-1/PD-L1 dissociation capacity measured by HTRF and in vitro bioactivity determined by the immune checkpoint blockade (ICB) co-culture assay.
View Article and Find Full Text PDFWe describe a new class of potent PD-L1/PD-1 inhibitors based on a terphenyl scaffold that is derived from the rigidified biphenyl-inspired structure. Using docking, we designed and then experimentally demonstrated the effectiveness of the terphenyl-based scaffolds in inhibiting PD-1/PD-L1 complex formation using various biophysical and biochemical techniques. We also present a high-resolution structure of the complex of PD-L1 with one of our most potent inhibitors to identify key PD-L1/inhibitor interactions at the molecular level.
View Article and Find Full Text PDF