Publications by authors named "Justyna A Karolak"

Knowing about the antibiotic resistance, serotypes, and virulence-associated genes of Group B Streptococcus for epidemiological and vaccine development is very important. We have determined antimicrobial susceptibility patterns, serotype, and virulence profiles. The antibiotic susceptibility was assessed for a total of 421 Streptococcus agalactiae strains, isolated from pregnant women and neonates.

View Article and Find Full Text PDF

Acinar dysplasia (AcDys) of the lung is a rare lethal developmental disorder in neonates characterized by severe respiratory failure and pulmonary arterial hypertension refractory to treatment. Recently, abnormalities of TBX4-FGF10-FGFR2-TMEM100 signaling regulating lung development have been reported in patients with AcDys due to heterozygous single-nucleotide variants or copy-number variant deletions involving , , or . Here, we describe a female neonate who died at 4 hours of life due to severe respiratory distress related to AcDys diagnosed by postmortem histopathologic evaluation.

View Article and Find Full Text PDF

Congenital alveolar dysplasia (CAD) belongs to rare lethal lung developmental disorders (LLDDs) in neonates, manifesting with acute respiratory failure and pulmonary arterial hypertension refractory to treatment. The majority of CAD cases have been associated with copy-number variant (CNV) deletions at 17q23.1q23.

View Article and Find Full Text PDF

Resolving complex genomic regions rich in segmental duplications (SDs) is challenging due to the high error rate of long-read sequencing. Here, we describe a targeted approach with a novel genome assembler PhaseDancer that extends SD-rich regions of interest iteratively. We validate its robustness and efficiency using a golden-standard set of human BAC clones and in silico-generated SDs with predefined evolutionary scenarios.

View Article and Find Full Text PDF

Background: Keratoconus (KTCN) is the most common corneal ectasia resulting in a conical shape of the cornea. Here, genomic variation in the corneal epithelium (CE) across the keratoconic cone surface in patients with KTCN and its relevance in the functioning of the immune system were assessed.

Methods: Samples from four unrelated adolescent patients with KTCN and two control individuals were obtained during the CXL and PRK procedures, respectively.

View Article and Find Full Text PDF

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal developmental disorder of lung morphogenesis caused by insufficiency of FOXF1 (forkhead box F1) transcription factor function. The cellular and transcriptional mechanisms by which FOXF1 deficiency disrupts human lung formation are unknown. To identify cell types, gene networks, and cell-cell interactions underlying the pathogenesis of ACDMPV.

View Article and Find Full Text PDF

Introduction: The development of molecular biology methods and their application in microbial research allowed the detection of many new pathogens that cause urinary tract infections (UTIs). Despite the advances of using new research techniques, the etiopathogenesis of UTIs, especially in patients undergoing dialysis and patients after kidney transplantation, is still not fully understood.

Methods: This study aimed to characterize and compare the composition of the bacterial element of the urinary tract microbiome between the groups of patients undergoing dialysis ( = 50) and patients after kidney transplantation ( = 50), with positive or negative urine culture, compared to healthy individuals ( = 50).

View Article and Find Full Text PDF

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by the arrest of fetal lung formation, resulting in neonatal death due to acute respiratory failure and pulmonary arterial hypertension. Heterozygous single-nucleotide variants or copy-number variant (CNV) deletions involving the gene and/or its lung-specific enhancer are found in the vast majority of ACDMPV patients. ACDMPV is often accompanied by extrapulmonary malformations, including the gastrointestinal, cardiac, or genitourinary systems.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent studies highlight the significant role of the () gene in respiratory diseases, linking its variants to congenital disorders that affect the respiratory and skeletal systems.
  • - The exact impact of the () gene on human development is still unclear, prompting a closer look at its developmental, tissue-specific, and pathological roles based on both human and animal research.
  • - The text calls for further research to better understand the () gene's functions and the consequences of its disruption on development and health.
View Article and Find Full Text PDF

Background: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) results from haploinsufficiency of the mesenchymal transcription factor FOXF1 gene. To date, only one case of an ACDMPV-causative CNV deletion inherited from a very-low level somatic mosaic mother has been reported.

Methods: Clinical, histopathological, and molecular studies, including whole genome sequencing, chromosomal microarray analysis, qPCR, and Sanger sequencing, followed by in vitro fertilization (IVF) with preimplantation genetic testing (PGT) were used to study a family with a deceased neonate with ACDMPV.

View Article and Find Full Text PDF

FGF10, as an FGFR2b-specific ligand, plays a crucial role during cell proliferation, multi-organ development, and tissue injury repair. The developmental importance of has been emphasized by the identification of abnormalities in human congenital disorders affecting different organs and systems. Single-nucleotide variants in or -involving copy-number variant deletions have been reported in families with lacrimo-auriculo-dento-digital syndrome, aplasia of the lacrimal and salivary glands, or lethal lung developmental disorders.

View Article and Find Full Text PDF

Purpose: High myopia (HM), an eye disorder with at least -6.0 diopters refractive error, has a complex etiology with environmental, genetic, and likely epigenetic factors involved. To complement the DNA methylation assessment in children with HM, we analyzed genes that had significantly lower DNA methylation levels.

View Article and Find Full Text PDF

Heterozygous single nucleotide variants (SNVs) or copy-number variant deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of patients with Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a lethal neonatal lung developmental disorder. We describe a four-generation family with a deceased ACDMPV neonate, her sibling from the electively terminated pregnancy, healthy mother with a history of pulmonary arterial hypertension (PAH), an unaffected aunt, an aunt deceased due to findings consistent with ACDMPV, and a reportedly unaffected grandmother, all with the frameshifting variant c.

View Article and Find Full Text PDF

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal lung developmental disorder in neonates due to heterozygous loss-of-function of the mesenchymal transcription factor gene, FOXF1. Interestingly, unlike ACDMPV-causing point mutations in FOXF1 that can be inherited from the mother or father, causative copy-number variant (CNV) deletions arise de novo and almost exclusively on chromosome 16 inherited from the mother (n = 50 vs. n = 3).

View Article and Find Full Text PDF

Variants involving TBX4 are associated with a wide variety of disorders, including pulmonary arterial hypertension, ischiocoxopodopatellar syndrome (ICPPS)/small patella syndrome (SPS), lethal lung developmental disorders (LLDDs) in neonates, heart defects, and prenatally lethal posterior amelia with pelvic and pulmonary hypoplasia syndrome. The objective of our study was to elucidate the wide variable phenotypic expressivity and incomplete penetrance in a three-generation family with a truncating variant in TBX4. In addition to exome and genome sequencing analyses, a candidate noncoding regulatory single nucleotide variant (SNV) within the lung-specific TBX4 enhancer was functionally tested using an in vitro luciferase reporter assay.

View Article and Find Full Text PDF

Purpose: Mitochondrial DNA (mtDNA) abnormalities were previously found to be causative in the pathogenesis of various diseases. Here, comprehensive mitochondrial and nuclear sequence and transcript analyses, along with analyses of the methylation aspects of nuclear genes related to mitochondrial function, were performed in patients with keratoconus (KTCN) to evaluate their contribution to the KTCN pathogenesis.

Methods: Blood mtDNA of 42 KTCN and 51 non-KTCN individuals was Sanger sequenced and analyzed along with the previously obtained corneal RNA-sequencing data of 20 KTCN and 21 non-KTCN individuals.

View Article and Find Full Text PDF

Background: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients.

View Article and Find Full Text PDF

Dermal fibroblasts are responsible for the production of the extracellular matrix that undergoes significant changes during the skin aging process. These changes are partially controlled by the TGF-β signaling, which regulates tissue homeostasis dependently on several genes, including CTGF and DNA methyltransferases. To investigate the potential differences in the regulation of the TGF-β signaling and related molecular pathways at distinct developmental stages, we silenced the expression of , , , , , and in the neonatal (HDF-N) and adult (HDF-A) human dermal fibroblasts using the RNAi method.

View Article and Find Full Text PDF

The ocular microbiome composition has only been partially characterized. Here, we used RNA-sequencing (RNA-Seq) data to assess microbial diversity in human corneal tissue. Additionally, conjunctival swab samples were examined to characterize ocular surface microbiota.

View Article and Find Full Text PDF

The FOXF1 gene, causative for a neonatal lethal lung developmental disorder alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), maps 1.7 kb away from the long noncoding RNA gene FENDRR on the opposite strand, suggesting they may be coregulated. Using RNA sequencing in lung tissue from ACDMPV patients with heterozygous deletions of the FOXF1 distant enhancer located 286 kb upstream, leaving FOXF1 and FENDRR intact, we have found that the FENDRR and FOXF1 expressions were reduced by approximately 75% and 50%, respectively, and were monoallelic from the intact chromosome 16q24.

View Article and Find Full Text PDF

Purpose: High myopia (HM) is an eye disorder with both environmental and genetic factors involved. Many genetic factors responsible for HM were recognized worldwide, but little is known about genetic variants underlying HM in Central Europe. Thus, the aim of this study was to identify rare sequence variants involved in HM in families from Central Europe to better understand the genetic basis of HM.

View Article and Find Full Text PDF

Background: The epithelial-mesenchymal signaling involving SHH-FOXF1, TBX4-FGF10, and TBX2 pathways is an essential transcriptional network operating during early lung organogenesis. However, precise regulatory interactions between different genes and proteins in this pathway are incompletely understood.

Methods: To identify TBX2 and TBX4 genome-wide binding sites, we performed chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) in human fetal lung fibroblasts IMR-90.

View Article and Find Full Text PDF

Background: Keratoconus (KTCN) is a progressive eye disease, characterized by changes in the shape and thickness of the cornea that results in loss of visual acuity. While numerous KTCN candidate genes have been identified, the genetic etiology of the disease remains undetermined. To further investigate and verify the contribution of particular genetic factors to KTCN, we assessed 45 candidate genes previously indicated as involved in KTCN etiology based on transcriptomic and genomic data.

View Article and Find Full Text PDF