Artificial mussel-glue proteins with pH-triggered cohesion control were synthesized by extending the tyrosinase activated polymerization of peptides to sequences with specific modules for cohesion control. The high propensity of these sequence sections to adopt β-sheets is suppressed by switch defects. This allows enzymatic activation and polymerization to proceed undisturbed.
View Article and Find Full Text PDFA previously introduced tyrosinase-activated polymerization of Tyr- and Cys-bearing peptides yielding artificial mussel-glue proteins is realized without the need of the specific enzyme by a chemical activation route. This decouples the sequence of polymerizable peptides (unimers) from the constraints of tyrosinase substrates and enables the polymerization of minimal motifs such as Dopa-Lys-Cys (U ) or Dopa-Gly-Cys (U ). In the polymerization procedure, sodium periodate is used to oxidize Dopa residues of the unimers to Dopa-quinones to which the thiol of a Cys residue is added in a Michael-type reaction.
View Article and Find Full Text PDFPeptides with suitable substrate properties for a specific tyrosinase are selected by combinatorial means from a one-bead-one-compound (OBOC) peptide library. The identified sequences exhibit tyrosine residues that are rapidly oxidized to 3,4-dihydroxyphenylalanine (Dopa), making the peptides interesting for enzyme-activated adhesives. The selection process of peptides involves tyrosinase oxidation of tyrosine-bearing sequences on a solid support, yielding dopaquinone residues (fish from the sequence pool), to which thiol-functional fluorescent probes attach by Michael-reaction (clip to mark).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2018
A novel strategy to generate adhesive protein analogues by enzyme-induced polymerization of peptides is reported. Peptide polymerization relies on tyrosinase oxidation of tyrosine residues to Dopaquinones, which rapidly form cysteinyldopa-moieties with free thiols from cysteine residues, thereby linking unimers and generating adhesive polymers. The resulting artificial protein analogues show strong adsorption to different surfaces, even resisting hypersaline conditions.
View Article and Find Full Text PDF