Neurodegenerative diseases encompass a group of debilitating conditions resulting from progressive nerve cell death. Of these, Alzheimer's disease (AD) occurs most frequently, but is currently incurable and has limited treatment success. Late onset AD, the most common form, is highly heritable but is caused by a combination of non-genetic risk factors and many low-effect genetic variants whose disease-causing mechanisms remain unclear.
View Article and Find Full Text PDFTransplantation of retinal pigment epithelial (RPE) cells holds great promise for patients with retinal degenerative diseases, such as age-related macular degeneration. In-depth characterization of RPE cell product identity and critical quality attributes are needed to enhance efficacy and safety of replacement therapy strategies. Here, we characterized an adult RPE stem cell-derived (RPESC-RPE) cell product using bulk and single-cell RNA sequencing (scRNA-seq), assessing functional cell integration in vitro into a mature RPE monolayer and in vivo efficacy by vision rescue in the Royal College of Surgeons rats.
View Article and Find Full Text PDFTau pathobiology has emerged as a key component underlying Alzheimer's disease (AD) progression; however, human neuronal models have struggled to recapitulate tau phenomena observed . Here, we aimed to define the minimal requirements to achieve endogenous tau aggregation in functional neurons utilizing human induced pluripotent stem cell (hiPSC) technology. Optimized hiPSC-derived cortical neurons seeded with AD brain-derived competent tau species or recombinant tau fibrils displayed increases in insoluble, endogenous tau aggregates.
View Article and Find Full Text PDF