Physiologically-based pharmacokinetic (PBPK) modeling offers a viable approach to predict induction drug-drug interactions (DDIs) with the potential to streamline or reduce clinical trial burden if predictions can be made with sufficient confidence. In the current work, the ability to predict the effect of rifampin, a well-characterized strong CYP3A4 inducer, on 20 CYP3A probes with publicly available PBPK models (often developed using a workflow with optimization following a strong inhibitor DDI study to gain confidence in fraction metabolized by CYP3A4, f, and fraction available after intestinal metabolism, Fg), was assessed. Substrates with a range of f (0.
View Article and Find Full Text PDFWomen commonly take medication during lactation. Currently, there is little information about the exposure-related safety of maternal medicines for breastfed infants. The aim was to explore the performance of a generic physiologically-based pharmacokinetic (PBPK) model to predict concentrations in human milk for ten physiochemically diverse medicines.
View Article and Find Full Text PDFThe expression of ten major drug-metabolizing UDP-glucuronosyltransferase (UGT) enzymes in a panel of 130 human hepatic microsomal samples was measured using a liquid chromatography-tandem mass spectrometry-based approach. Simultaneously, ten cytochromes P450 and P450 reductase were also measured, and activity-expression relationships were assessed for comparison. The resulting data sets demonstrated that, with the exception of UGT2B17, 10th to 90th percentiles of UGT expression spanned 3- to 8-fold ranges.
View Article and Find Full Text PDFOn April 24, 2019, a symposium on Pediatric Pharmacokinetics and Dose Predictions was held as a satellite meeting to the 10th Juvenile Toxicity Symposium. This symposium brought together scientists from academia, industry, and clinical research organizations with the aim to update each other on the current knowledge on pediatric drug development. Through more knowledge on specific ontogeny profiles of drug metabolism and transporter proteins, integrated into physiologically-based pharmacokinetic (PBPK) models, we have gained a more integrated understanding of age-related differences in pharmacokinetics (PKs), Relevant examples were presented during the meeting.
View Article and Find Full Text PDFUridine diphosphate glucuronosyltransferases (UGTs) catalyze glucuronidation to facilitate systemic and local clearance of numerous chemicals and drugs. To investigate whether UGT expression is coregulated in human liver, we analyzed the protein expression of UGTs 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 3A1, and 3A2 using western blots from 164 healthy human liver samples, comparing expression with age and sex. UGT1A6 levels were significantly higher in children than adults, and UGT3A1 and 3A2 expression significantly increased with age from childhood to age >65 yearas.
View Article and Find Full Text PDFUDP-glucuronosyltransferase (UGT)1A4 and UGT2B10 are the human UGT isoforms most frequently involved in -glucuronidation of drugs. UGT2B10 exhibits higher affinity than UGT1A4 for numerous substrates, making it potentially the more important enzyme for metabolism of these compounds in vivo. Clinically relevant UGT2B10 polymorphisms, including a null activity splice site mutation common in African populations, can lead to large exposure differences for UGT2B10 substrates that may limit their developability as marketed drugs.
View Article and Find Full Text PDFAn understanding of the postnatal development of hepatic UDP-glucuronosyltransferase (UGT) enzymes is required for accurate prediction of the age-dependent changes in pharmacokinetics of many drugs used in children. However, the maturation rate of hepatic UGT isoforms remains a major knowledge gap. This study aimed to establish the age-associated changes in glucuronidation activity of 10 major hepatic UGT isoforms in humans, namely, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17.
View Article and Find Full Text PDFUDP-glucuronosyltransferase (UGT)-mediated metabolism is possibly the most important conjugation reaction for marketed drugs. However, there are currently no generally accepted standard incubation conditions for UGT microsomal assays, and substantial differences in experimental design and methodology between laboratories hinder cross-study comparison of in vitro activities. This study aimed to define optimal experimental conditions to determine glucuronidation activity of multiple UGT isoforms simultaneously using human liver microsomes.
View Article and Find Full Text PDFLimited understanding of drug pharmacokinetics in children is one of the major challenges in paediatric drug development. This is most critical in neonates and infants owing to rapid changes in physiological functions, especially in the activity of drug-metabolising enzymes. Paediatric physiologically based pharmacokinetic models that integrate ontogeny functions for cytochrome P450 enzymes have aided our understanding of drug exposure in children, including those under the age of 2 years.
View Article and Find Full Text PDFOrganic anion-transporting polypeptide (OATP)1B1, OATP1B3, and OATP2B1 transporters play an important role in hepatic drug disposition. Recently, an increasing number of studies have reported proteomic expression data for OATP transporters. However, systematic analysis and understanding of the actual differences in OATP expression between liver tissue and commonly used cellular systems is lacking.
View Article and Find Full Text PDF