Publications by authors named "Justina Sestoke"

The possibility of using the Digital Image Correlation (DIC) technique, along with Lamb wave analysis, was investigated in this study for damage detection and characterization of polymer carbon fiber (CFRP) composites with the help of numerical modeling. The finite element model (FEM) of the composite specimen with artificial damage was developed in ANSYS and validated by the results of full-field DIC strain measurements. A quantitative analysis of the damage detection capabilities of DIC structure surface strain measurements in the context of different defect sizes, depths, and orientation angles relative to the loading direction was conducted.

View Article and Find Full Text PDF

High-density polyethylene (HDPE) pipes are becoming increasingly popular, being used in various fields, such as construction, marine, petroleum, water transfer, process water, methane gas collection, oil and gas gathering, gas distribution systems, mining, acid and wet gas lines, offshore oil and gas and in nuclear power plants. Higher-order guided Lamb wave (UGW) modes can be used to detect various defects in complex structures. We will apply this methodology to one of the types of plastic-the structure of high-density polyethylene (HDPE).

View Article and Find Full Text PDF

Contemporary technologies are employing composite plate materials developed by using various innovative materials (nanostructures, mica structures, etc.). Application of higher-order modes could allow better detection and characterization of defects characteristic of planar plastic and composite structures, mainly due to shorter wavelength.

View Article and Find Full Text PDF

Ultrasonic non-destructive testing techniques (NDT) based on the application of guided waves are already used for inspection of plate-type structures made of various materials, including composite materials. Air-coupled ultrasonic techniques are used to test such structures by means of guided waves. The objective of this research was development and investigation of air-coupled excitation of a slow A₀ Lamb wave mode in thin plastic films by a PMN-32%PT ultrasonic array.

View Article and Find Full Text PDF

Air-coupled excitation and reception of ultrasonic guided waves is already used for non-destructive testing and evaluation (NDT & E). Usually for air-coupled NDT & E purposes the lowest zero-order antisymmetric Lamb wave mode A₀ is used, because it is most sensitive to internal defects and thickness variations. The velocity of the A₀ mode is reduced with a reducing frequency and at low frequencies may become slower than the ultrasound velocity in air.

View Article and Find Full Text PDF

For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9.

View Article and Find Full Text PDF

Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals.

View Article and Find Full Text PDF