Genetic rearrangements that fuse an androgen-regulated promoter area with a protein-coding portion of an originally androgen-unaffected gene are frequent in prostate cancer, with the fusion between transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor ERG (ERG) (TMPRSS2-ERG fusion) being the most prevalent. Conventional hybridization- or amplification-based methods can test for the presence of expected gene fusions, but the exploratory analysis of currently unknown fusion partners is often cost-prohibitive. Here, we developed an innovative next-generation sequencing (NGS)-based approach for gene fusion analysis termed fusion sequencing via terminator-assisted synthesis (FTAS-seq).
View Article and Find Full Text PDFThe ever-growing demand for inexpensive, rapid, and accurate exploration of genomes calls for refinement of existing sequencing techniques. The development of next-generation sequencing (NGS) was a revolutionary milestone in genome analysis. While modified nucleotides already were inherent tools in sequencing and imaging, further modification of nucleotides enabled the expansion into even more diverse applications.
View Article and Find Full Text PDFHigh-throughput RNA sequencing offers a comprehensive analysis of transcriptome complexity originated from regulatory events, such as differential gene expression, alternative polyadenylation and others, and allows the increase in diagnostic capacity and precision. For gene expression profiling applications that do not specifically require information on alternative splicing events, the mRNA 3' termini counting approach is a cost-effective alternative to whole transcriptome sequencing. Here, we report MTAS-seq (mRNA sequencing via terminator-assisted synthesis) - a novel RNA-seq library preparation method directed towards mRNA 3' termini.
View Article and Find Full Text PDFSequence-based characterization of bacterial communities has long been a hostage of limitations of both 16S rRNA gene and whole metagenome sequencing. Neither approach is universally applicable, and the main efforts to resolve constraints have been devoted to improvement of computational prediction tools. Here, we present semi-targeted 16S rRNA sequencing (st16S-seq), a method designed for sequencing V1-V2 regions of the 16S rRNA gene along with the genomic locus upstream of the gene.
View Article and Find Full Text PDF