Publications by authors named "Justina E Ochoa"

Oxidative stress (OS) is a common event in most hepatopathies, leading to mitochondrial permeability transition pore (MPTP) formation and further exacerbation of both OS from mitochondrial origin and cell death. Intracellular Ca²⁺ increase plays a permissive role in these events, but the underlying mechanisms are poorly known. We examined in primary cultured rat hepatocytes whether the Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling pathway is involved in this process, by using tert-butyl hydroperoxide (tBOOH) as a pro-oxidant, model compound.

View Article and Find Full Text PDF

Bilirubin is an endogenous antioxidant with cytoprotective properties, and several studies highlight its potential in the treatment of pro-oxidant diseases. We demonstrated that oxidative stress (OS), a key feature in most hepatopathies, induces cholestasis by actin cytoskeleton disarrangement and further endocytic internalization of key canalicular transporters, such as the bile salt export pump (Bsep) and the multidrug resistance-associated protein 2 (Mrp2) . Here, we evaluated the capability of physiological concentrations of unconjugated bilirubin (UB) to limit OS and the impairment in biliary secretory function induced by the model pro-oxidant agent, tert-butylhydroperoxide (tBuOOH).

View Article and Find Full Text PDF

Glucose deprivation entails oxidative stress and apoptosis in diverse cell types. Liver tissue shows high tolerance to nutritional stress, however regulation of survival in normal hepatocytes subjected to glucose restriction is unclear. We assessed the survival response of cultured hepatocytes subjected to glucose deprivation and analyzed the putative participation of protein kinase A (PKA) in this response.

View Article and Find Full Text PDF

Unlabelled: Estradiol 17β-D-glucuronide (E(2)17G) is an endogenous, cholestatic metabolite that induces endocytic internalization of the canalicular transporters relevant to bile secretion: bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). We assessed whether phosphoinositide 3-kinase (PI3K) is involved in E(2)17G-induced cholestasis. E(2)17G activated PI3K according to an assessment of the phosphorylation of the final PI3K effector, protein kinase B (Akt).

View Article and Find Full Text PDF

Oxidative stress elevates Ca2+ and, presumably, activates Ca2+ -dependent PKCs. We analyzed the participation of Ca2+ -dependent PKCs in actin disorganization and tight-junctional impairment induced by the pro-oxidant tert-butylhydroperoxide (tBOOH) in isolated rat hepatocyte couplets. tBOOH (100 microM) augmented radical oxygen species (ROS), as indicated by increased lipid peroxidation (+217%, p < 0.

View Article and Find Full Text PDF

The mechanisms involved in spironolactone (SL, 200 micromol/kg body weight, 3 days i.p.)-induced choleresis were explored in vivo by evaluating bile salt export pump (Bsep)-, multidrug resistance-associated protein 2 (Mrp2)-, and anion exchanger 2 (AE2)-mediated secretory processes in rat liver.

View Article and Find Full Text PDF

Hydrophobic bile salts induce either necrosis or apoptosis depending on the severity of the injury caused by them. Since bile salt-induced apoptosis is influenced by Ca2+- and protein kinase-signaling pathways, and both necrosis and apoptosis share common initiating mechanisms, we analyzed whether these signaling cascades also influence bile salt-induced necrosis in isolated rat hepatocytes. Taurochenodeoxycholate (TCDC, 0.

View Article and Find Full Text PDF