Publications by authors named "Justin You"

Microglia have been increasingly implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Dectin-1, encoded by the gene, is highly upregulated in a specific microglial response state called disease-associated microglia (DAM) in various neurodegenerative conditions. However, the role of Dectin-1 in ALS is undetermined.

View Article and Find Full Text PDF
Article Synopsis
  • MATR3 is an RNA-binding protein connected to neurodegenerative and neurodevelopmental diseases, but its role in cryptic splicing is not well understood.
  • Loss of MATR3 leads to the inclusion of cryptic exons in various transcripts, significantly affecting gene function.
  • Disease-associated variants, like S85C and M548T, impact MATR3 by reducing its solubility and altering its ability to bind RNA and regulate cryptic splicing.
View Article and Find Full Text PDF

Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons, leading to muscle weakness, paralysis, and eventual death. Research from the past few decades has appreciated that ALS is not only a disease of the motor neurons but also a disease that involves systemic metabolic dysfunction. This review will examine the foundational research of understanding metabolic dysfunction in ALS and provide an overview of past and current studies in ALS patients and animal models, spanning from full systems to various metabolic organs.

View Article and Find Full Text PDF

The neuropathological hallmark of amyotrophic lateral sclerosis (ALS) is motor neuron degeneration in the spinal cord and cortex. Accumulating studies report that other neurons in the central nervous system (CNS) are also affected in ALS. Mutations in , which encodes a nuclear matrix protein involved in RNA splicing, have been linked to ALS.

View Article and Find Full Text PDF

The F115C mutation in the MATR3 gene has been linked to amyotrophic lateral sclerosis (ALS). To determine the pathogenicity of the F115C mutation and the mechanism by which this mutation causes ALS, we generated mice that harbor the F115C mutation in the endogenous murine Matr3 locus. Heterozygous or homozygous MATR3 F115C knock-in mice were viable and did not exhibit motor deficits up to 2 years of age.

View Article and Find Full Text PDF