Introduction: The process of evaluating candidates for living kidney donation can be inefficient. A structured review of existing information on this topic can provide a necessary foundation for quality improvement.
Methods: We conducted a scoping review to map the published literature to different themes related to an efficient donor candidate evaluation.
Hybrid nanocomposite films of ITO-coated, self-assembled porous nanostructures of tungsten trioxide (WO(3)) were fabricated using electrochemical anodization and sputtering. The morphology and chemical nature of the porous nanostructures were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The photoelectrochemical (PEC) properties of WO(3) porous nanostructures were studied in various alkaline electrolytes and compared with those of titania nanotubes.
View Article and Find Full Text PDFThe fabrication of controlled, self-organized, highly ordered tungsten and aluminum nanorods was accomplished via the aluminum lattice template-assisted glancing angle sputtering technique. The typical growth mechanism of traditional glancing angle deposition technique was biased by self-organized aluminum lattice seeds resulting in superior quality nanorods in terms of size control, distribution, and long range order. The morphology, size, and distribution of the nanorods were highly controlled by the characteristics of the template seeds indicating the ability to obtain metallic nanorods with tunable distributions and morphologies that can be grown to suit a particular application.
View Article and Find Full Text PDFThe nature of water interaction with tungsten nanorods (WNRs) fabricated by the glancing-angle deposition technique (GLAD)-using RF magnetron sputtering under various Ar pressures and substrate tilting angles and then subsequent coating with Teflon-has been studied and reported. Such nanostructured surfaces have shown strong water repellency properties with apparent water contact angles (AWCA) of as high as 160°, which were found to depend strongly upon the fabrication conditions. Variations in Ar pressure and the substrate tilting angle resulted in the generation of WNRs with different surface roughness and porosity properties.
View Article and Find Full Text PDF