Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium.
View Article and Find Full Text PDFBackground: Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states.
Methods: We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h).
Background: The immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in COVID-19 patients has been extensively investigated. However, much less is known about the long-term effects of infection in patients and how it could affect the immune system and its capacity to respond to future perturbations.
Methods: Using a targeted single-cell multiomics approach, we have recently identified a prolonged anti-inflammatory gene expression signature in T and NK cells in type 1 diabetes patients treated with low-dose IL-2.
Objective: To describe immune pathways and gene networks altered following major abdominal surgery and to identify transcriptomic patterns associated with postoperative pneumonia.
Background: Nosocomial infections are a major healthcare challenge, developing in over 20% of patients aged 45 or over undergoing major abdominal surgery, with postoperative pneumonia associated with an almost 5-fold increase in 30-day mortality.
Methods: From a prospective consecutive cohort (n=150) undergoing major abdominal surgery, whole-blood RNA was collected preoperatively and at 3 time-points postoperatively (2-6, 24, and 48 h).
Natural Killer cells are innate lymphocytes with central roles in immunosurveillance and are implicated in autoimmune pathogenesis. The degree to which regulatory variants affect Natural Killer cell gene expression is poorly understood. Here we perform expression quantitative trait locus mapping of negatively selected Natural Killer cells from a population of healthy Europeans (n = 245).
View Article and Find Full Text PDFBackground: Chromatin states and enhancers associate gene expression, cell identity and disease. Here, we systematically delineate the acute innate immune response to endotoxin in terms of human macrophage enhancer activity and contrast with endotoxin tolerance, profiling the coding and non-coding transcriptome, chromatin accessibility and epigenetic modifications.
Results: We describe the spectrum of enhancers under acute and tolerance conditions and the regulatory networks between these enhancers and biological processes including gene expression, splicing regulation, transcription factor binding and enhancer RNA signatures.
Driven by the necessity to survive environmental pathogens, the human immune system has evolved exceptional diversity and plasticity, to which several factors contribute including inheritable structural polymorphism of the underlying genes. Characterizing this variation is challenging due to the complexity of these loci, which contain extensive regions of paralogy, segmental duplication and high copy-number repeats, but recent progress in long-read sequencing and optical mapping techniques suggests this problem may now be tractable. Here we assess this by using long-read sequencing platforms from PacBio and Oxford Nanopore, supplemented with short-read sequencing and Bionano optical mapping, to sequence DNA extracted from CD14+ monocytes and peripheral blood mononuclear cells from a single European individual identified as HV31.
View Article and Find Full Text PDFGenome engineering using CRISPR/Cas9 technology enables simple, efficient and precise genomic modifications in human cells. Conventional immortalized cell lines can be easily edited or screened using genome-wide libraries with lentiviral transduction. However, cell types derived from the differentiation of induced Pluripotent Stem Cells (iPSC), which often represent more relevant, patient-derived models for human pathology, are much more difficult to engineer as CRISPR/Cas9 delivery to these differentiated cells can be inefficient and toxic.
View Article and Find Full Text PDFBringing together cancer genomes from different projects increases power and allows the investigation of pan-cancer, molecular mechanisms. However, working with whole genomes sequenced over several years in different sequencing centres requires a framework to compare the quality of these sequences. We used the Pan-Cancer Analysis of Whole Genomes cohort as a test case to construct such a framework.
View Article and Find Full Text PDFThe sheer size of the human genome makes it improbable that identical somatic mutations at the exact same position are observed in multiple tumours solely by chance. The scarcity of cancer driver mutations also precludes positive selection as the sole explanation. Therefore, recurrent mutations may be highly informative of characteristics of mutational processes.
View Article and Find Full Text PDF