Publications by authors named "Justin Waldern"

Biogenesis of circular RNA usually involves a backsplicing reaction where the downstream donor site is ligated to the upstream acceptor site by the spliceosome. For this reaction to occur, it is hypothesized that these sites must be in proximity. Inverted repeat sequences, such as Alu elements, in the upstream and downstream introns are predicted to base-pair and represent one mechanism for inducing proximity.

View Article and Find Full Text PDF

More than 4,000 single nucleotide polymorphisms (SNP) variants have been identified in the human gene, however only a few have been studied in the context of protein function. The tandem zinc finger domain of ZFP36L2, an RNA binding protein, is the functional domain that binds to its target mRNAs. This protein/RNA interaction triggers mRNA degradation, controlling gene expression.

View Article and Find Full Text PDF

Production of large amounts of histone proteins during S phase is critical for proper chromatin formation and genome integrity. This process is achieved in part by the presence of multiple copies of replication dependent (RD) histone genes that occur in one or more clusters in metazoan genomes. In addition, RD histone gene clusters are associated with a specialized nuclear body, the histone locus body (HLB), which facilitates efficient transcription and 3' end-processing of RD histone mRNA.

View Article and Find Full Text PDF

Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature mRNA structures in cells.

View Article and Find Full Text PDF

Zinc finger protein 36 like 2 (ZFP36L2) is an RNA-binding protein that destabilizes transcripts containing adenine-uridine rich elements (AREs). The overlap between ZFP36L2 targets in different tissues is minimal, suggesting that ZFP36L2-targeting is highly tissue specific. We developed a novel Zfp36l2-lacking mouse model (L2-fKO) to identify factors governing this tissue specificity.

View Article and Find Full Text PDF

Disease-associated variants (DAVs) are commonly considered either through a genomic lens that describes variant function at the DNA level, or at the protein function level if the variant is translated. Although the genomic and proteomic effects of variation are well-characterized, genetic variants disrupting post-transcriptional regulation is another mechanism of disease that remains understudied. Specific RNA sequence motifs mediate post-transcriptional regulation both in the nucleus and cytoplasm of eukaryotic cells, often by binding to RNA-binding proteins or other RNAs.

View Article and Find Full Text PDF

Background: Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition.

View Article and Find Full Text PDF

Group II (gII) introns are mobile retroelements that can spread to new DNA sites through retrotransposition, which can be influenced by a variety of host factors. To determine if these host factors bear any relationship to the genomic location of gII introns, we developed a bioinformatic pipeline wherein we focused on the genomic neighborhoods of bacterial gII introns within their native contexts and sought to determine global relationships between introns and their surrounding genes. We found that, although gII introns inhabit diverse regions, these neighborhoods are often functionally enriched for genes that could promote gII intron retention or proliferation.

View Article and Find Full Text PDF