Publications by authors named "Justin Taft"

Unlabelled: Type I interferons (IFN-I) are cytokines with potent antiviral and inflammatory capacities. IFN-I signaling drives the expression of hundreds of IFN-I stimulated genes (ISGs), whose aggregate function results in the control of viral infection. A few of these ISGs are tasked with negatively regulating the IFN-I response to prevent overt inflammation.

View Article and Find Full Text PDF

Genetic variation in UNC93B1, a key component in TLR trafficking, can lead to autoinflammation caused by increased TLR activity. Analysis of seven patient variants combined with a comprehensive alanine screen revealed that different regions of UNC93B1 selectively regulate different TLRs (Rael et al. https://doi.

View Article and Find Full Text PDF

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.

View Article and Find Full Text PDF

Down's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS.

View Article and Find Full Text PDF

Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral cytokines. They induce IFN stimulated genes (ISGs), which act as proinflammatory mediators, antiviral effectors, and negative regulators of the IFN-I signaling cascade itself. One such regulator is interferon stimulated gene 15 (ISG15).

View Article and Find Full Text PDF

Human USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome.

View Article and Find Full Text PDF

The increasing prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with the ability to escape existing humoral protection conferred by previous infection and/or immunization necessitates the discovery of broadly reactive neutralizing antibodies (nAbs). Utilizing mRNA display, we identify a set of antibodies against SARS-CoV-2 spike (S) proteins and characterize the structures of nAbs that recognize epitopes in the S1 subunit of the S glycoprotein. These structural studies reveal distinct binding modes for several antibodies, including the targeting of rare cryptic epitopes in the receptor-binding domain (RBD) of S that interact with angiotensin-converting enzyme 2 (ACE2) to initiate infection, as well as the S1 subdomain 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the challenges faced by CD4-binding site (CD4bs) directed antibodies in recognizing an N-linked glycan at residue N276 (glycan276) on the HIV-envelope trimer.
  • Two lineages of glycan276-dependent CD4bs antibodies were isolated, with one (CH540-VRC40.01) neutralizing 81% of diverse HIV strains and the other (CH314-VRC33.01) neutralizing 45%.
  • Structural analysis through cryo-electron microscopy revealed different mechanisms of glycan276 recognition by these antibodies while maintaining a similar glycan276 conformation, implying the importance of glycan276 for developing effective immunogens targeting the CD4bs.
View Article and Find Full Text PDF

The increasing prevalence of SARS-CoV-2 variants with the ability to escape existing humoral protection conferred by previous infection and/or immunization necessitates the discovery of broadly-reactive neutralizing antibodies (nAbs). Utilizing mRNA display, we identified a set of antibodies against SARS-CoV-2 spike (S) proteins and characterized the structures of nAbs that recognized epitopes in the S1 subunit of the S glycoprotein. These structural studies revealed distinct binding modes for several antibodies, including targeting of rare cryptic epitopes in the receptor-binding domain (RBD) of S that interacts with angiotensin- converting enzyme 2 (ACE2) to initiate infection, as well as the S1 subdomain 1.

View Article and Find Full Text PDF

TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1.

View Article and Find Full Text PDF

The SARS-CoV-2 variants replacing the first wave strain pose an increased threat by their potential ability to escape pre-existing humoral protection. An angiotensin converting enzyme 2 (ACE2) decoy that competes with endogenous ACE2 for binding of the SARS-CoV-2 spike receptor binding domain (S RBD) and inhibits infection may offer a therapeutic option with sustained efficacy against variants. Here, we used Molecular Dynamics (MD) simulation to predict ACE2 sequence substitutions that might increase its affinity for S RBD and screened candidate ACE2 decoys in vitro.

View Article and Find Full Text PDF

Type I IFN (IFN-I) is thought to be rapidly internalized and degraded following binding to its receptor and initiation of signaling. However, many studies report the persistent effects mediated by IFN-I for days or even weeks, both ex vivo and in vivo. These long-lasting effects are attributed to downstream signaling molecules or induced effectors having a long half-life, particularly in specific cell types.

View Article and Find Full Text PDF

Type I interferonopathies are monogenic disorders characterized by enhanced type I interferon (IFN-I) cytokine activity. Inherited USP18 and ISG15 deficiencies underlie type I interferonopathies by preventing the regulation of late responses to IFN-I. Specifically, USP18, being stabilized by ISG15, sterically hinders JAK1 from binding to the IFNAR2 subunit of the IFN-I receptor.

View Article and Find Full Text PDF

ISG15-deficient humans exhibit permanent, low-level expression of antiviral effectors that safely protect them from various viruses. Because the murine ISG15 axis functions differently, we identified animal models that recapitulate the human condition for the development of ISG15-targeting broad-spectrum antivirals. Canine, porcine, and rhesus macaque ISG15, such as human ISG15, stabilize USP18, a potent inhibitor of type I interferon (IFN)-I.

View Article and Find Full Text PDF

Type I IFNs (IFN-Is) are powerful cytokines. They provide remarkable protection against viral infections, but their indiscriminate production causes severe self-inflicted damage that can be lethal, particularly in early development. In humans, inappropriately high IFN-I levels caused by defects in the regulatory mechanisms that control IFN-I production and response result in clinical conditions known as type I interferonopathies.

View Article and Find Full Text PDF

Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center.

View Article and Find Full Text PDF

Amphibian metamorphosis is driven by thyroid hormone (TH). We used prometamorphic tadpoles and a cell line of the African clawed frog (Xenopus laevis) to examine immediate effects of dioxin exposure on TH. Gene expression patterns suggest cross-talk between the thyroid hormone receptor (TR) and aryl hydrocarbon receptor (AHR) signaling pathways.

View Article and Find Full Text PDF

The advent of RNA-guided endonuclease (RGEN)-mediated gene editing, specifically via CRISPR/Cas9, has spurred intensive efforts to improve the efficiency of both RGEN delivery and targeted mutagenesis. The major viral vectors in use for delivery of Cas9 and its associated guide RNA, lentiviral and adeno-associated viral systems, have the potential for undesired random integration into the host genome. Here, we repurpose Sendai virus, an RNA virus with no viral DNA phase and that replicates solely in the cytoplasm, as a delivery system for efficient Cas9-mediated gene editing.

View Article and Find Full Text PDF

The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. Here, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry.

View Article and Find Full Text PDF
Article Synopsis
  • - The HIV-1 envelope trimer is shielded by approximately 90 N-linked sugars, making up about half of its mass, which helps the virus evade immune responses.
  • - Researchers crystallized fully glycosylated Env trimers from different clades and analyzed their structures at high resolution, revealing a complex network of sugars that protect the viral proteins from antibodies.
  • - The study found that the arrangement of these sugars varies in terms of order and interaction, impacting how broadly neutralizing antibodies can recognize and bind to the virus, highlighting the diversity in oligosaccharide affinity needed for effective neutralization.
View Article and Find Full Text PDF

Unlabelled: The isolation of broadly neutralizing HIV-1 monoclonal antibodies (MAbs) to distinct epitopes on the viral envelope glycoprotein (Env) provides the potential to use combinations of MAbs for prevention and treatment of HIV-1 infection. Since many of these MAbs have been isolated in the last few years, the potency and breadth of MAb combinations have not been well characterized. In two parallel experiments, we examined the in vitro neutralizing activities of double-, triple-, and quadruple-MAb combinations targeting four distinct epitopes, including the CD4-binding site, the V1V2-glycan region, the V3-glycan supersite, and the gp41 membrane-proximal external region (MPER), using a panel of 125 Env-pseudotyped viruses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm5ca4qi11irp8gvq6knt3qqmccj7h20c): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once