Barrier island overwash occurs when the elevation of wave runup exceeds the dune crest and induces landward transport of sediment across a barrier island and deposition of a washover deposit. Washover deposition is generally attributed to major storms, is important for the maintenance of barrier island resilience to sea-level rise and is used to extend hurricane records beyond historical accounts by reconstructing the frequency and extent of washover deposits preserved in the sedimentary record. Here, we present a high-fidelity 3-year record of washover evolution and overwash at a transgressive barrier island site.
View Article and Find Full Text PDFEcosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes.
View Article and Find Full Text PDFCarbon burial is increasingly valued as a service provided by threatened vegetated coastal habitats. Similarly, shellfish reefs contain significant pools of carbon and are globally endangered, yet considerable uncertainty remains regarding shellfish reefs' role as sources (+) or sinks (-) of atmospheric CO While CO release is a by-product of carbonate shell production (then burial), shellfish also facilitate atmospheric-CO drawdown via filtration and rapid biodeposition of carbon-fixing primary producers. We provide a framework to account for the dual burial of inorganic and organic carbon, and demonstrate that decade-old experimental reefs on intertidal sandflats were net sources of CO (7.
View Article and Find Full Text PDFWithin intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level.
View Article and Find Full Text PDF