Publications by authors named "Justin T Ernst"

Flavaglines such as silvestrol (1) and rocaglamide (2) constitute an interesting class of natural products with promising anticancer activities. Their mode of action is based on inhibition of eukaryotic initiation factor 4A (eIF4A) dependent translation through formation of a stable ternary complex with eIF4A and mRNA, thus blocking ribosome scanning. Herein we describe initial SAR studies in a novel series of 1-aminomethyl substituted flavagline-inspired eIF4A inhibitors.

View Article and Find Full Text PDF

The PI3K/AKT/mTOR pathway is often activated in lymphoma through alterations in PI3K, PTEN, and B-cell receptor signaling, leading to dysregulation of eIF4A (through its regulators, eIF4B, eIF4G, and PDCD4) and the eIF4F complex. Activation of eIF4F has a direct role in tumorigenesis due to increased synthesis of oncogenes that are dependent on enhanced eIF4A RNA helicase activity for translation. eFT226, which inhibits translation of specific mRNAs by promoting eIF4A1 binding to 5'-untranslated regions (UTR) containing polypurine and/or G-quadruplex recognition motifs, shows potent antiproliferative activity and significant efficacy against a panel of diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma models with ≤1 mg/kg/week intravenous administration.

View Article and Find Full Text PDF

Rocaglates, rocaglamides, and related flavagline natural products exert their remarkable anticancer activity through inhibition of eukaryotic initiation factor 4A (eIF4A) but generally display suboptimal drug-like properties. In our efforts to identify potent drug-like eIF4A inhibitors, we developed synthetic strategies for diastereoselectively functionalizing the C1 position of aza-rocaglamide scaffolds (cf. and ), which proceed via retention or inversion of configuration at C1 depending on the C2 substituent (cf.

View Article and Find Full Text PDF
Article Synopsis
  • - Dysregulation of protein translation contributes significantly to cancer progression, with eIF4A playing a crucial role in regulating protein synthesis by being part of the eIF4F complex.
  • - The natural product flavagline, particularly rocaglamide A, inhibits protein synthesis by creating a non-functional complex with certain messenger RNAs and eIF4A, showing promise as an anticancer agent but facing challenges in drug development due to poor properties and complexity.
  • - Researchers focused on improving drug properties through a design strategy, resulting in Zotatifin, a compound with great physicochemical characteristics and strong anti-cancer effects, making it a candidate for further clinical testing.
View Article and Find Full Text PDF

Dysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling.

View Article and Find Full Text PDF

A structure-based drug design strategy was used to optimize a novel benzolactam series of HSP90α/β inhibitors to achieve >1000-fold selectivity versus the HSP90 endoplasmic reticulum and mitochondrial isoforms (GRP94 and TRAP1, respectively). Selective HSP90α/β inhibitors were found to be equipotent to pan-HSP90 inhibitors in promoting the clearance of mutant huntingtin protein (mHtt) in vitro, however with less cellular toxicity. Improved tolerability profiles may enable the use of HSP90α/β selective inhibitors in treating chronic neurodegenerative indications such as Huntington's disease (HD).

View Article and Find Full Text PDF

HSP90 continues to be a target of interest for neurodegeneration indications. Selective knockdown of the HSP90 cytosolic isoforms α and β is sufficient to reduce mutant huntingtin protein levels in vitro. Chemotype-dependent binding conformations of HSP90α/β appear to strongly influence isoform selectivity.

View Article and Find Full Text PDF

We have optimized a novel series of potent p38 MAP kinase inhibitors based on an alpha-ketoamide scaffold through structure based design that due to their extended molecular architecture bind, in addition to the ATP site, to an allosteric pocket. In vitro ADME, in vivo PK and efficacy studies show these compounds to have drug-like characteristics and have resulted in the nomination of a development candidate which is currently in phase II clinical trials for the oral treatment of inflammatory conditions.

View Article and Find Full Text PDF

We have identified a novel series of potent p38 MAP kinase inhibitors through structure-based design which due to their extended molecular architecture bind, in addition to the ATP site, to an allosteric pocket. In vitro ADME and in vivo PK studies show these compounds to have drug-like characteristics which could result in the development of an oral treatment for inflammatory conditions.

View Article and Find Full Text PDF

We describe a general method for the mimicry of one face of an alpha-helix based on a terphenyl scaffold that spatially projects functionality in a manner similar to that of two turns of an alpha-helix. The synthetic scaffold reduces the flexibility and molecular weight of the mimicked protein secondary structure. We have applied this design to the development of antagonists of the alpha-helix binding protein Bcl-x(L).

View Article and Find Full Text PDF

The design of synthetic agents to disrupt protein-protein interactions has received relatively little attention in recent years. In this review we describe strategies for targeting different types of protein surfaces using mimetics of protein secondary or tertiary structure. In this way strong and selective binding to a protein surface has be achieved and disruption of clinically important protein-protein interactions has been demonstrated in models of human disease.

View Article and Find Full Text PDF

XTT can be metabolically reduced by mitochondrial dehydrogenase in viable cells to a water-soluble formazan product. Thus XTT has been widely used to evaluate cell viability and to screen anti-HIV agents and the cytotoxicity of these agents. The present studies demonstrated that XTT formazan derived from XTT in cell culture significantly inhibits the fusion of HIV-1-infected cells with uninfected cells.

View Article and Find Full Text PDF

The rational design of low-molecular weight ligands that disrupt protein-protein interactions is still a challenging goal in medicinal chemistry. Our approach to this problem involves the design of molecular scaffolds that mimic the surface functionality projected along one face of an alpha-helix. Using a terphenyl scaffold, which in a staggered conformation closely reproduces the projection of functionality on the surface of an alpha-helix, we designed mimics of the pro-apoptotic alpha-helical Bak-peptide as inhibitors of the Bak/Bcl-xL interaction.

View Article and Find Full Text PDF