We repeat the earliest claimed [2]catenane synthesis, reported by Wasserman over 60 years ago, in order to ascertain whether or not a nontemplate, statistical synthesis by acyloin macrocyclization does indeed form mechanically interlocked rings. The lack of direct experimental evidence for Wasserman's catenane has led to it being described as a "prophetic compound", a technical term used in patents for claimed molecules that have not yet been synthesized. Contemporary synthetic methods were used to reconstruct Wasserman's deuterium-labeled macrocycle and other building blocks on the 10-100 g reaction scale necessary to generate, in principle, ∼1 mg of catenane.
View Article and Find Full Text PDFWe report on the preparation of a decapeptide through the parallel operation of two rotaxane-based molecular machines. The synthesis proceeds in four stages: (1) simultaneous operation of two molecular peptide synthesizers in the same reaction vessel; (2) selective residue activation of short-oligomer intermediates; (3) ligation; (4) product release. Key features of the machine design include the following: (a) selective transformation of a thioproline building block to a cysteine (once it has been incorporated into a hexapeptide intermediate by one molecular machine); (b) a macrocycle-peptide hydrazine linkage (as part of the second machine) to differentiate the intermediates and enable their directional ligation; and (c) incorporation of a Glu residue in the assembly module of one machine to enable release of the final product while simultaneously removing part of the assembly machinery from the product.
View Article and Find Full Text PDFType 3 diabetes mellitus has been coined to describe an alternative pathologic pathway of Alzheimer's disease (AD). The insulin resistance and impaired insulin signaling seen on positron-emission tomography scans in the brain of those affected by AD support this disease hypothesis. Two products-the medical food caprylidene (Axona) and coconut oil-seek to target the underlying pathology of type 3 diabetes mellitus by providing an alternative fuel source in the brain.
View Article and Find Full Text PDFIndividuals with Alzheimer's disease (AD) and their caregivers are using supplements in an effort to halt the progression of the disease. Individuals at risk for or fearing Alzheimer's may use these supplements to try to prevent the disease. Senior care pharmacists are accessible and uniquely qualified to answer questions, make recommendations, and attempt to make drug therapy safe and effective for these individuals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2016
The total synthesis of peniphenones A-D has been achieved via Michael reactions between appropriate nucleophiles and a common o-quinone methide intermediate. This strategy, which was based on a biosynthetic hypothesis, minimized the use of protecting groups and thus facilitated concise syntheses of the natural products. The most complex target, the benzannulated spiroketal peniphenone A, was synthesized enantioselectively in nine linear steps from commercially available starting materials.
View Article and Find Full Text PDFProtected cyclohexanol and cyclohex-2-enol substrates, containing benzyl ether and benzoate ester moieties, were designed to fit into the active site of the Tyr96Ala mutant of cytochrome P450cam. The protected cyclohexanol substrates were efficiently and selectively hydroxylated by the mutant enzyme at the trans C-H bond of C-4 on the cyclohexyl ring. The selectivity of oxidation of the benzoate ester protected cyclohexanol could be altered by making alternative amino acid substitutions in the P450cam active site.
View Article and Find Full Text PDFThe total synthesis of ent-penilactone A and penilactone B has been achieved via biomimetic Michael reactions between tetronic acids and o-quinone methides. A five-component cascade reaction between a tetronic acid, formaldehyde, and a resorcinol derivative that generates four carbon-carbon bonds, one carbon-oxygen bond, and two stereocenters in a one-pot synthesis of penilactone A is also reported.
View Article and Find Full Text PDFA structure revision for the recently isolated fungal meroterpenoids, cytosporolides A-C, is suggested based on biosynthetic speculation and reinterpretation of existing spectroscopic data. The structure revision is supported by a biomimetic synthetic study, featuring a [4 + 2] cycloaddition reaction between a presumed o-quinone methide intermediate and β-caryophyllene.
View Article and Find Full Text PDF