Publications by authors named "Justin Schilling"

G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures.

View Article and Find Full Text PDF

β-adrenergic receptors (βARs) are critical regulators of acute cardiovascular physiology. In response to elevated catecholamine stimulation during development of congestive heart failure (CHF), chronic activation of Gs-dependent β1AR and Gi-dependent β2AR pathways leads to enhanced cardiomyocyte death, reduced β1AR expression, and decreased inotropic reserve. β-blockers act to block excessive catecholamine stimulation of βARs to decrease cellular apoptotic signaling and normalize β1AR expression and inotropy.

View Article and Find Full Text PDF

The three white perch (Morone americana) vitellogenins (VtgAa, VtgAb, VtgC) were quantified accurately and precisely in the liver, plasma, and ovary during pre-, early-, mid-, and post-vitellogenic oocyte growth using protein cleavage-isotope dilution mass spectrometry (PC-IDMS). Western blotting generally mirrored the PC-IDMS results. By PC-IDMS, VtgC was quantifiable in pre-vitellogenic ovary tissues and VtgAb was quantifiable in pre-vitellogenic liver tissues however, neither protein was detected by western blotting in these respective tissues at this time point.

View Article and Find Full Text PDF

With growing abundance and awareness of endocrine disrupting compounds (EDCs) in the environment, there is a need for accurate and reliable detection of EDC exposure. Our objective in the present study was to observe differences within and between the global plasma proteomes of sexually mature male and female white perch (Morone americana) before (Initial Control, IC) and after 17β-estradiol (E2 ) induction. Semiquantitative nanoLC-MS/MS data were analyzed by machine learning support vector machines (SVMs) and by two-way ANOVA.

View Article and Find Full Text PDF

Fish egg yolk is largely derived from vitellogenins, which are synthesized in the liver, taken up from the maternal circulation by growing oocytes via receptor-mediated endocytosis and enzymatically processed into yolk proteins that are stored in the ooplasm. Lipid droplets are another major component of fish egg yolk, and these are mainly composed of neutral lipids that may originate from maternal plasma lipoproteins. This review aims to briefly summarize our current understanding of the molecular mechanisms underlying yolk formation in fishes.

View Article and Find Full Text PDF

Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes.

View Article and Find Full Text PDF

We quantified three vitellogenins (VtgAa, VtgAb, VtgC) or their derived yolk proteins (YPs) in the liver, plasma, and ovary during pre-vitellogenic (PreVG), mid-vitellogenic (MVG), and late-vitellogenic (LVG) oocyte growth and during post-vitellogenesis (PostVG) in the striped bass (Morone saxatilis) using label-free quantitative mass spectrometry (MS). Western blotting of the samples using antisera raised against gray mullet (Mugil cephalus) lipovitellins derived from VtgAa, VtgAb, and VtgC confirmed the MS results. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed liver as the primary site of expression for all three Vtgs, with extra-hepatic transcription weakly detected in ovary, foregut, adipose tissue, and brain.

View Article and Find Full Text PDF

Compartment proteomics enable broad characterization of target tissues. We employed a simple fractionation method and filter-aided sample preparation (FASP) to characterize the cytosolic and membrane fractions of white perch ovary tissues by semiquantitative tandem mass spectrometry using label-free quantitation based on normalized spectral counts. FASP depletes both low-molecular-weight and high-molecular-weight substances that could interfere with protein digestion and subsequent peptide separation and detection.

View Article and Find Full Text PDF

The influenza virus M2 protein is a well-validated yet underexploited proton-selective ion channel essential for influenza virus infectivity. Because M2 is a toxic viral ion channel, existing M2 inhibitors have been discovered through live virus inhibition or medicinal chemistry rather than M2-targeted high-throughput screening (HTS), and direct measurement of its activity has been limited to live cells or reconstituted lipid bilayers. Here, we describe a cell-free ion channel assay in which M2 ion channels are incorporated into virus-like particles (VLPs) and proton conductance is measured directly across the viral lipid bilayer, detecting changes in membrane potential, ion permeability, and ion channel function.

View Article and Find Full Text PDF

Despite the crucial impact of leptin signaling on metabolism and body weight, little is known about the structure of the liganded leptin receptor (LEP-R) complex. Here, we applied single-particle electron microscopy (EM) to characterize the architecture of the extracellular region of LEP-R alone and in complex with leptin. We show that unliganded LEP-R displays significant flexibility in a hinge region within the cytokine homology region 2 (CHR2) that is connected to rigid membrane-proximal FnIII domains.

View Article and Find Full Text PDF

Ribosome assembly in eukaryotes requires approximately 200 essential assembly factors (AFs) and occurs through ordered events that initiate in the nucleolus and culminate in the cytoplasm. Here, we present the electron cryo-microscopy (cryo-EM) structure of a late cytoplasmic 40S ribosome assembly intermediate from Saccharomyces cerevisiae at 18 angstrom resolution. We obtained cryo-EM reconstructions of preribosomal complexes lacking individual components to define the positions of all seven AFs bound to this intermediate.

View Article and Find Full Text PDF

We demonstrate that virus-like particles carrying conformationally complex membrane proteins ("lipoparticles") can be used as soluble probes of membrane protein interactions. To demonstrate the utility of this approach, we use lipoparticles to rapidly differentiate the relative kinetics of membrane protein interactions using optical biosensor technology. The technique is applied to diverse membrane proteins, including G protein-coupled receptors, and used to rank the relative kinetics of nearly all the commercially available monoclonal antibodies against chemokine receptor CCR5.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontg3ds9c8jhnal80naoub5l17697c1tku): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once