Publications by authors named "Justin S Plaut"

Synthetic small-diameter vascular grafts (<6 mm) are used in the treatment of cardiovascular diseases, including coronary artery disease, but fail much more readily than similar grafts made from autologous vascular tissue. A promising approach to improve the patency rates of synthetic vascular grafts is to promote the adhesion of endothelial cells to the luminal surface of the graft. In this study, we characterized the surface chemical and topographic changes imparted on poly(vinyl alcohol) (PVA), an emerging hydrogel vascular graft material, after exposure to various reactive ion plasma (RIP) surface treatments, how these changes dissipate after storage in a sealed environment at standard temperature and pressure, and the effect of these changes on the adhesion of endothelial colony-forming cells (ECFCs).

View Article and Find Full Text PDF

Background: Senescent cells accumulate in tissues over time as part of the natural ageing process and the removal of senescent cells has shown promise for alleviating many different age-related diseases in mice. Cancer is an age-associated disease and there are numerous mechanisms driving cellular senescence in cancer that can be detrimental to recovery. Thus, it would be beneficial to develop a senolytic that acts not only on ageing cells but also senescent cancer cells to prevent cancer recurrence or progression.

View Article and Find Full Text PDF

Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca) and inorganic phosphate (P) within their lumen and forming a nucleation core (NC). After further sequestration of Ca and P, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples.

View Article and Find Full Text PDF

Viral gene therapy is a means of delivering genes to replace malfunctioning ones, to kill cancer cells, or to correct genetic mutations. This technology is emerging as a powerful clinical tool; however, it is still limited by viral tropism, uptake and clearance by the liver, and most importantly an immune response. To overcome these challenges, we sought to merge the robustness of viral gene expression and the versatility of nanoparticle technology.

View Article and Find Full Text PDF

Despite recent advances in the supramolecular assembly of cell-penetrating peptide (CPP) nanostructures, the tuning of size, shape, morphology and packaging of drugs in these materials still remain unexplored. Herein, through sequential ligation of peptide building blocks, we create cell-penetrating self-assembling peptide nanomaterials (CSPNs) with the capability to translocate inside cells. We devised a triblock array of Tat [HIV-1 derived transactivator of transcription] based CPPs, conjugated to up to four Phenylalanine (Phe) residues through an amphiphilic linker, (RADA).

View Article and Find Full Text PDF

High affinity and specificity are considered essential for affinity reagents and molecularly-targeted therapeutics, such as monoclonal antibodies. However, life's own molecular and cellular machinery consists of lower affinity, highly multivalent interactions that are metastable, but easily reversible or displaceable. With this inspiration, we have developed a DNA-based reagent platform that uses massive avidity to achieve stable, but reversible specific recognition of polyvalent targets.

View Article and Find Full Text PDF