Publications by authors named "Justin S Lenhart"

Homologous recombination requires the coordinated effort of several proteins to complete break resection, homologous pairing, and resolution of DNA crossover structures. RecN is a conserved bacterial protein important for double-strand break repair and is a member of the structural maintenance of chromosomes (SMC) protein family. Current models in Bacillus subtilis propose that RecN responds to double-stranded breaks prior to RecA and end processing, suggesting that RecN is among the very first proteins responsible for break detection.

View Article and Find Full Text PDF

During normal DNA replication, all cells encounter damage to their genetic material. As a result, organisms have developed response pathways that provide time for the cell to complete DNA repair before cell division occurs. In Bacillus subtilis, it is well established that the SOS-induced cell division inhibitor YneA blocks cell division after genotoxic stress; however, it remains unclear how YneA enforces the checkpoint.

View Article and Find Full Text PDF

DNA mismatch repair (MMR) is responsible for correcting errors formed during DNA replication. DNA polymerase errors include base mismatches and extra helical nucleotides referred to as insertion and deletion loops. In bacteria, MMR increases the fidelity of the chromosomal DNA replication pathway approximately 100-fold.

View Article and Find Full Text PDF

RecA is central to maintaining genome integrity in bacterial cells. Despite the near-ubiquitous conservation of RecA in eubacteria, the pathways that facilitate RecA loading and repair center assembly have remained poorly understood in Bacillus subtilis. Here, we show that RecA rapidly colocalizes with the DNA polymerase complex (replisome) immediately following DNA damage or damage-independent replication fork arrest.

View Article and Find Full Text PDF

During mismatch repair, MutS is responsible for mismatch detection and the recruitment of MutL to the mismatch through a mechanism that is unknown in most organisms. Here, we identified a discrete site on MutS that is occupied by MutL in Bacillus subtilis. The MutL binding site is composed of two adjacent phenylalanine residues located laterally in an exposed loop of MutS.

View Article and Find Full Text PDF

Mismatch repair (MMR) increases the fidelity of DNA replication by identifying and correcting replication errors. Processivity clamps are vital components of DNA replication and MMR, yet the mechanism and extent to which they participate in MMR remains unclear. We investigated the role of the Bacillus subtilis processivity clamp DnaN, and found that it serves as a platform for mismatch detection and coupling of repair to DNA replication.

View Article and Find Full Text PDF

Protein-protein interactions are required for the proper function of many biological pathways. Numerous biochemical and protein blotting methods are available for probing direct and indirect interactions between two protein-binding partners. Here, we describe the methodology of far Western blotting, or immunodot blotting, as a technique for probing direct interactions between two proteins.

View Article and Find Full Text PDF

From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology.

View Article and Find Full Text PDF

Mismatch repair is a highly conserved pathway responsible for correcting DNA polymerase errors incorporated during genome replication. MutL is a mismatch repair protein known to coordinate several steps in repair that ultimately results in strand removal following mismatch identification by MutS. MutL homologs from bacteria to humans contain well-conserved N-terminal and C-terminal domains.

View Article and Find Full Text PDF

Mismatch repair (MMR) corrects DNA polymerase errors occurring during genome replication. MMR is critical for genome maintenance, and its loss increases mutation rates several hundred fold. Recent work has shown that the interaction between the mismatch recognition protein MutS and the replication processivity clamp is important for MMR in Bacillus subtilis.

View Article and Find Full Text PDF

The beta clamp is an essential replication sliding clamp required for processive DNA synthesis. The beta clamp is also critical for several additional aspects of DNA metabolism, including DNA mismatch repair (MMR). The dnaN5 allele of Bacillus subtilis encodes a mutant form of beta clamp containing the G73R substitution.

View Article and Find Full Text PDF

Both prokaryotes and eukaryotes respond to DNA damage through a complex set of physiological changes. Alterations in gene expression, the redistribution of existing proteins, and the assembly of new protein complexes can be stimulated by a variety of DNA lesions and mismatched DNA base pairs. Fluorescence microscopy has been used as a powerful experimental tool for visualizing and quantifying these and other responses to DNA lesions and to monitor DNA replication status within the complex subcellular architecture of a living cell.

View Article and Find Full Text PDF