Background: Egg-based inactivated quadrivalent seasonal influenza vaccine (eIIV4), cell culture-based inactivated quadrivalent seasonal influenza vaccine (ccIIV4), and recombinant haemagglutinin (HA)-based quadrivalent seasonal influenza vaccine (RIV4) have been licensed for use in the USA. In this study, we used antigen-specific serum proteomics analysis to assess how the molecular composition and qualities of the serological antibody repertoires differ after seasonal influenza immunisation by each of the three vaccines and how different vaccination platforms affect the HA binding affinity and breadth of the serum antibodies that comprise the polyclonal response.
Methods: In this comparative, prospective, observational cohort study, we included female US health-care personnel (mean age 47·6 years [SD 8]) who received a single dose of RIV4, eIIV4, or ccIIV4 during the 2018-19 influenza season at Baylor Scott & White Health (Temple, TX, USA).
To better identify emerging or reemerging pathogens in patients with difficult-to-diagnose infections, it is important to improve access to advanced molecular testing methods. This is particularly relevant for cases where conventional microbiologic testing has been unable to detect the pathogen and the patient's specimens test negative. To assess the availability and utility of such testing for human clinical specimens, a literature review of published biomedical literature was conducted.
View Article and Find Full Text PDFThe surveillance and identification of emerging, reemerging, and unknown infectious disease pathogens is essential to national public health preparedness and relies on fluidity, coordination, and interconnectivity between public and private pathogen surveillance systems and networks. Developing a national sentinel surveillance network with existing resources and infrastructure could increase efficiency, accelerate the identification of emerging public health threats, and support coordinated intervention strategies that reduce morbidity and mortality. However, implementing and sustaining programs to detect emerging and reemerging pathogens in humans using advanced molecular methods, such as metagenomic sequencing, requires making large investments in testing equipment and developing networks of clinicians, laboratory scientists, and bioinformaticians.
View Article and Find Full Text PDFThe COVID-19 pandemic was accompanied by an unprecedented surveillance effort. The resulting data were and will continue to be critical for surveillance and control of SARS-CoV-2. However, some genomic surveillance methods experienced challenges as the virus evolved, resulting in incomplete and poor quality data.
View Article and Find Full Text PDFGroup A streptococcal strains potentially acquire new M protein gene types through genetic recombination (emm switching). To detect such variants, we screened 12,596 invasive GAS genomes for strains of differing emm types that shared the same multilocus sequence type (ST). Through this screening we detected a variant consisting of 16 serum opacity factor (SOF)-positive, emm pattern E, emm82 isolates that were ST36, previously only associated with SOF-negative, emm pattern A, emm12.
View Article and Find Full Text PDFSpatially heterogeneous landscape factors such as urbanisation can have substantial effects on the severity and spread of wildlife diseases. However, research linking patterns of pathogen transmission to landscape features remains rare. Using a combination of phylogeographic and machine learning approaches, we tested the influence of landscape and host factors on feline immunodeficiency virus (FIV) genetic variation and spread among bobcats () sampled from coastal southern California.
View Article and Find Full Text PDFPurpose: To report outcomes in patients with intrahepatic cholangiocarcinoma treated with yttrium-90 resin microspheres (transarterial radioembolization [TARE]) from a multicenter, prospective observational registry.
Materials And Methods: Ninety-five patients (median age, 67 years [interquartile range {IQR}, 59-74]; 50 men) were treated in 27 centers between July 2015 and August 2020. Baseline demographic characteristics included imaging findings, performance status, and previous systemic or locoregional treatments.
Objective: To determine whether modified K-12 student quarantine policies that allow some students to continue in-person education during their quarantine period increase schoolwide SARS-CoV-2 transmission risk following the increase in cases in winter 2020-2021.
Methods: We conducted a prospective cohort study of COVID-19 cases and close contacts among students and staff (n = 65,621) in 103 Missouri public schools. Participants were offered free, saliva-based RT-PCR testing.
Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events.
View Article and Find Full Text PDFImportance: Few studies have prospectively assessed SARS-CoV-2 community infection in children aged 0 to 4 years. Information about SARS-CoV-2 incidence and clinical and virological features in young children could help guide prevention and mitigation strategies.
Objective: To assess SARS-CoV-2 incidence, clinical and virological features, and symptoms in a prospective household cohort and to compare viral load by age group, symptoms, and SARS-CoV-2 lineage in young children, older children, and adults.
Background: Households are common places for spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated factors associated with household transmission and acquisition of SARS-CoV-2.
Methods: Households with children age <18 years were enrolled into prospective, longitudinal cohorts and followed from August 2020 to August 2021 in Utah, September 2020 to August 2021 in New York City, and November 2020 to October 2021 in Maryland.
The widespread transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for rapid nucleic acid diagnostics that are easy to use outside of centralized clinical laboratories. Here we report the development and performance benchmarking of Cas13-based nucleic acid assays leveraging lyophilised reagents and fast sample inactivation at ambient temperature. The assays, which we named SHINEv.
View Article and Find Full Text PDFAt the start of the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) designed, manufactured, and distributed the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel for SARS-CoV-2 detection. The diagnostic panel targeted three viral nucleocapsid gene loci (N1, N2, and N3 primers and probes) to maximize sensitivity and to provide redundancy for virus detection if mutations occurred. After the first distribution of the diagnostic panel, state public health laboratories reported fluorescent signal in the absence of viral template (false-positive reactivity) for the N3 component and to a lesser extent for N1.
View Article and Find Full Text PDFSARS-CoV-2, the virus that causes COVID-19, is constantly mutating, leading to new variants (1). Variants have the potential to affect transmission, disease severity, diagnostics, therapeutics, and natural and vaccine-induced immunity. In November 2020, CDC established national surveillance for SARS-CoV-2 variants using genomic sequencing.
View Article and Find Full Text PDFMMWR Morb Mortal Wkly Rep
March 2021
Microbiol Resour Announc
March 2021
sp. strain X0973 is a Gram-positive, weakly acid-fast, aerobic actinomycete obtained from a human abscess with NBRC 100433 as its closest phylogenetic neighbor. Here, we report using Illumina MiSeq and PacBio reads to assemble the complete and circular genome sequence of 3.
View Article and Find Full Text PDFBunyaviruses (Negarnaviricota: Bunyavirales) are a large and diverse group of viruses that include important human, veterinary, and plant pathogens. The rapid characterization of known and new emerging pathogens depends on the availability of comprehensive reference sequence databases that can be used to match unknowns, infer evolutionary relationships and pathogenic potential, and make response decisions in an evidence-based manner. In this study, we determined the coding-complete genome sequences of 99 bunyaviruses in the Centers for Disease Control and Prevention's Arbovirus Reference Collection, focusing on orthonairoviruses (family Nairoviridae), orthobunyaviruses (Peribunyaviridae), and phleboviruses (Phenuiviridae) that either completely or partially lacked genome sequences.
View Article and Find Full Text PDF